

Vulkan-Renderer

[image: language] [image: platforms] [image: github actions] [https://github.com/inexorgame/vulkan-renderer/actions?query=workflow%3A%22Build%22] [image: readthedocs] [https://inexor-vulkan-renderer.readthedocs.io] [image: discord] [https://discord.com/invite/acUW8k7] [image: license] [https://inexor-vulkan-renderer.readthedocs.io/en/latest/license/main.html]

[image: _images/inexor-banner.svg]Inexor is a MIT-licensed open-source project which develops a new 3D octree game engine by combining modern C++ with Vulkan API.

Documentation

Quickstart: Building Instructions (Windows/Linux) & Getting started

	Development
	Supported platforms

	Getting started

	Building vulkan-renderer

	Debugging

	Engine design

	Continuous integration

	Clang format

	Test automation

	Benchmarking

	Static code analysis

	Reference

	GitHub Issue Labeling

	Source Code

	How to contribute
	Code of Conduct

	Licenses

	Contribute code

	Contribute art

	List of Contributors

	Frequently asked questions
	What is Inexor?

	Which platforms are supported?

	What is the current state of the project?

	How is Inexor organized?

	How to contact us?

	How to build?

	Where to find Inexor’s documentation?

	What is Vulkan API?

	Why is Vulkan API the future?

	Can you explain Vulkan API in simple terms?

	How difficult is development with Vulkan API?

	Does my graphics card support Vulkan API?

	Will you support other rendering APIs?

	Which topics are currently not in focus of development?

	Changelog
	v0.1-alpha.3 (17 May 2020)

	v0.1-alpha.2 (26 Apr 2020)

	v0.1-alpha.1 (12 Apr 2020)

	Helpful Links
	Advantages of Vulkan

	Getting started with Vulkan

	Beginner Vulkan API tutorials

	Migrating from OpenGL to Vulkan API

	Advanced Vulkan API tutorials and articles

	Vulkan API presentations

	Vulkan API example projects

	Drivers

	Debuggers

	Modern C++

	Source Code License

	Contact us

Frequently asked questions

Please visit inexor.org [https://inexor.org] and join our Discord server [https://discord.com/invite/acUW8k7].

	What is Inexor?

	Which platforms are supported?

	What is the current state of the project?

	How is Inexor organized?

	How to contact us?

	How to build?

	Where to find Inexor’s documentation?

	What is Vulkan API?

	Why is Vulkan API the future?

	Can you explain Vulkan API in simple terms?

	How difficult is development with Vulkan API?

	Does my graphics card support Vulkan API?

	Will you support other rendering APIs?

	Which topics are currently not in focus of development?

What is Inexor?

[image: images/inexor2.png]
Inexor is a MIT-licensed open-source project which develops a new 3D octree game engine by combining modern C++ [https://awesomecpp.com/] with Vulkan Vulkan API [https://www.khronos.org/vulkan/].

We have the following goals for the Inexor engine:

	Combine modern C++ [https://www.youtube.com/watch?v=TC9zhufV_Z8] with Vulkan API [https://www.khronos.org/vulkan/].

	Task-based parallelization [https://youtu.be/JpmK0zu4Mts?t=500] using a threadpool [https://community.khronos.org/t/opinions-on-using-threadpools-for-designing-a-vulkan-game-engine/105519] and a work stealing queue [https://stackoverflow.com/questions/2101789/implementation-of-a-work-stealing-queue-in-c-c].

	Generic rendering architecture [https://youtu.be/6NWfznwFnMs?t=1845] using a rendergraph [https://de.slideshare.net/DICEStudio/framegraph-extensible-rendering-architecture-in-frostbite].

	Create a Vulkan API codebase which can be used in production.

We are using good software engineering practices:

	Resource acquisition is initialization (RAII) [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-raii].

	Software design patterns [https://refactoring.guru/].

	Continuous integration (CI) [https://en.wikipedia.org/wiki/Continuous_integration] using GitHub actions [https://github.com/features/actions].

	Code design by strict compliance with the C++ core guidelines [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines] and Scott Meyers books [https://www.oreilly.com/library/view/effective-modern-c/9781491908419/].

	Use of the new C++ standard library [https://en.cppreference.com/w/cpp/header] (C++11, C++14, and C++17).

	Code documentation using doxygen [https://www.doxygen.nl/index.html].

	Automatic unit testing [https://github.com/google/googletest] and benchmarking [https://github.com/google/benchmark].

	Static code analysis [https://en.wikipedia.org/wiki/Static_program_analysis] with clang-tidy [https://clang.llvm.org/extra/clang-tidy/].

	Automatic code formatting [https://clang.llvm.org/docs/ClangFormat.html] using clang-format [https://clang.llvm.org/docs/ClangFormat.html].

	CMake [https://cmake.org/] project setup.

You can find Vulkan example code online which follows the mantra “don’t use this in production - it’s tutorial code”. Inexor disagrees with this as we believe that defeats its own purpose. If example code is not meant to be used in some other projects then there’s something wrong with that example code. Many projects don’t use a proper memory management library like VMA [https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator] or they do not abstract their code using RAII [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-raii], but use a lot of code duplication instead. Inexor is designed to be used in production. Bear in mind however that Inexor is also still far away from being a finished game engine.

Which platforms are supported?

	We support x64 Microsoft Windows 8, 8.1, and 10.

	We support every x64 Linux distribution for which Vulkan drivers exist.

	We have specific build instructions for Gentoo [https://www.gentoo.org/] and Ubuntu [https://ubuntu.com/download]. If you have found a way to set it up for other Linux distributions, please open a pull request [https://github.com/inexorgame/vulkan-renderer/pulls] and let us know!

	We do not support macOS or iOS because it would require us to use MoltenVK [https://github.com/KhronosGroup/MoltenVK] to get Vulkan running on Mac OS. Additionally, this would require some changes in the engines as not all of Inexor’s dependencies are available on macOS or iOS.

	We also do not support Android because this would require some changes in the engines as not all of Inexor’s dependencies are available on Android.

What is the current state of the project?

We are still in very early development, but this project can already offer:

	A modern C++20 codebase with CMake setup.

	Stable builds for Windows and Linux using Continuous Integration (CI) [https://en.wikipedia.org/wiki/Continuous_integration].

	A rendergraph [https://de.slideshare.net/DICEStudio/framegraph-extensible-rendering-architecture-in-frostbite] in early development.

	ImGui [https://github.com/ocornut/imgui] integration using separate renderpasses.

	RAII [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-raii] wrappers for various Vulkan resources.

	Extensive logging with spdlog [https://github.com/gabime/spdlog].

	Vulkan Memory Allocator [https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator] for graphics memory management.

	VMA memory replays [https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator#binaries] for debugging are already working.

	Full RenderDoc [https://renderdoc.org/] integration with internal resource naming [https://www.saschawillems.de/blog/2016/05/28/tutorial-on-using-vulkans-vk_ext_debug_marker-with-renderdoc/].

How is Inexor organized?

	Inexor has no central authority.

	It’s a headless collective which makes decisions through creative discussions.

	We are welcoming new contributors to our team.

How to contact us?

Please visit inexor.org [https://inexor.org] and join our Discord [https://discord.com/invite/acUW8k7] server.

How to build?

If you have any trouble building please open a ticket [https://github.com/inexorgame/vulkan-renderer/issues] or join our Discord [https://discord.com/invite/acUW8k7].

How to build vulkan-renderer? [https://inexor-vulkan-renderer.readthedocs.io/en/latest/development/building.html]

Where to find Inexor’s documentation?

	Read our docs here [https://inexor-vulkan-renderer.readthedocs.io/en/latest/].

What is Vulkan API?

[image: _images/vulkan.png]
Inexor uses Vulkan API [https://www.khronos.org/vulkan/] as rendering backend. Vulkan is a new, multi platform low level API (application programming interface [https://en.wikipedia.org/wiki/Application_programming_interface]) for high-performance graphics programming and computing. It is the successor to OpenGL [https://en.wikipedia.org/wiki/OpenGL], and it is important to state that is is very different from it. Vulkan is not just a new version of OpenGL or an extension of it. Instead, Vulkan is a very low level API which allows for much deeper control over the graphics card and the driver, like DirectX 12 [https://en.wikipedia.org/wiki/DirectX] or Apple’s Metal [https://en.wikipedia.org/wiki/Metal_(API)]. Unlike OpenGL, Vulkan API is build in a way it fits the architecture of modern graphics cards. This offers better performance [https://stackoverflow.com/questions/56766983/what-can-vulkan-do-specifically-that-opengl-4-6-cannot] due to reduction of overhead and driver guesswork during runtime. This results in higher frame rate, more predictable CPU workload and a lower memory usage. The most important benefit of Vulkan is the fact that it allows for multithreaded rendering [https://stackoverflow.com/questions/11097170/multithreaded-rendering-on-opengl], which is not possible in OpenGL at all. In general, Vulkan does a lot of work during the initialization of the application but therefore reduces work during rendering. Since Vulkan is much more explicit in terms of code, it foces you to think about the structure and architecture of your code. Both Vulkan and OpenGL are being developed by the Khronos Group [https://www.khronos.org/]. Vulkan is being developed through an unprecedented collaboration [https://www.khronos.org/members/list] of major industry-leading companies (Google, Intel, AMD, NVidia, Sony, Samsung, Huawei, Qualcomm, Valve Software and many more). Vulkan is the only multi platform low level graphics API.

Why is Vulkan API the future?

Performance

	Lower and more predictable CPU load which results in better performance [https://stackoverflow.com/questions/56766983/what-can-vulkan-do-specifically-that-opengl-4-6-cannot] and a reduction of driver guesswork.

	Vulkan API is asynchronous and encourages multithreaded rendering [https://www.reddit.com/r/vulkan/comments/52aodq/multithreading_in_vulkan_where_should_i_start/]. This is not possible with OpenGL!

	The low level API design of Vulkan allows for advanced optimizations such as rendergraphs [https://de.slideshare.net/DICEStudio/framegraph-extensible-rendering-architecture-in-frostbite] for generic rendering architectures.

	It also wants you to use the GPU asynchronously, sometimes referred to as GPU multithreading.

	Vulkan allows the use of multiple GPUs, even if they are not physically linked via crossfire bridge.

	The reduction of CPU workload and it’s improved predictability can enforce the GPU to be the limiting factor of performance, as it should be.

Memory efficiency

	Vulkan gives much deeper control and better interfaces over graphics and system memory.

	Vulkan API enforces memory management to be done by the application rather than the driver.

	Since the application knows best about the importance of every resource it uses, Vulkan API allows for a better memory usage.

Architecture

	Unlike OpenGL, Vulkan fits the design of modern GPUs as it is not just one single state machine [https://stackoverflow.com/questions/31282678/what-is-the-opengl-state-machine]. This means Vulkan API was designed from the beginning to match the architecture of modern graphics cards. OpenGL however still matches the design of graphics cards from the time it was invented in the 1990s.

	Vulkan is a fresh start, whereas OpenGL contains a myriad of hacks to support very rare use cases.

	Vulkan has layers [https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#extendingvulkan-layers] and extensions [https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#extendingvulkan-extensions] as part of its design. You can check for supported GPU plugins on the target machine and enable them as needed.

	Vulkan API itself is completely platform agnostic.

	Available on a variety of platforms: Windows, Linux, mobile devices and much more!

	The ending of the OpenGL era [https://www.reddit.com/r/opengl/comments/b44tyu/apple_is_deprecating_opengl/] has begun.

	Vulkan is being developed through an unprecedented collaboration [https://www.khronos.org/members/list] of major industry-leading companies. It is not being developed by one company only (like Microsoft’s DirectX for example).

	As Vulkan’s motto states, it really is industry-forged.

Consistency and standardization

	Vulkan precompiles shaders to a standardized bytecode format [https://en.wikipedia.org/wiki/Standard_Portable_Intermediate_Representation] called SPIR-V [https://www.khronos.org/spir/]. This also reduces driver guesswork during runtime.

	The explicit design of Vulkan gives much deeper control and avoids driver guesswork and undefined behavior of graphics drivers.

Debugging tools

	Validation layers [https://github.com/KhronosGroup/Vulkan-ValidationLayers] and diagnostics can be independently activated during development, allowing better error handling and debugging compared with OpenGL or DirectX.

	Upon release builds, the validation layers can be turned off easily.

	Vulkan API applications can be debugged with RenderDoc [https://renderdoc.org/].

	The Vulkan specification [https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html] is very easy to read and it is the central guideline for how to use the API.

Open Source

	Vulkan API and some Vulkan graphics card drivers are open source [https://en.wikipedia.org/wiki/Open_source].

Can you explain Vulkan API in simple terms?

	Vulkan API gives programmers much deeper control over the gamer’s hardware.

	If applied correctly, Vulkan can result in a significant performance boost.

	The API encourages the programmers to think in detail about graphics cards and their game engine.

	It offers advanced optimization techniques which can result in a lower RAM and video memory usage.

	Using Vulkan can yield in lower and more predictable CPU usage.

	Vulkan allows programmers to make more effective use of multiple CPU cores.

How difficult is development with Vulkan API?

	This API does a lot of initialization during the loading phase of the application.

	The key to success is a good abstraction of Vulkan API based on the needs of the application/game.

	Vulkan is a C-style API. In simplified terms you fill out structures which start with Vk.. and submit them together with other parameters to vk... functions. That’s it. No complex interfaces.

	Vulkan API has a very good documentation [https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html].

	The challenges of Vulkan game/engine development boil down to basic programming challenges: abstraction, resource management and parallelization.

	You may want to read Vulkan in 30 minutes [https://renderdoc.org/vulkan-in-30-minutes.html] by Baldur Karlsson [https://github.com/baldurk/renderdoc].

Does my graphics card support Vulkan API?

	You can look up your graphics card in the Vulkan hardware database [https://vulkan.gpuinfo.org/] by Sascha Willems [https://www.saschawillems.de/].

	Every new graphics card which is coming out these days supports Vulkan API.

	Vulkan is also supported on older graphics cards going back to Radeon HD 7000 series [https://en.wikipedia.org/wiki/Radeon_HD_7000_series] and Nvidia Geforce 6 series [https://en.wikipedia.org/wiki/GeForce_6_series].

Will you support other rendering APIs?

	No, because testing for Vulkan already takes a lot of time and there is no sense in supporting deprecated technology.

	Some studios like id-software also dropped OpenGL entirely [https://youtu.be/0R23npUCCnw?t=252].

	Vulkan API is the only low level multi platform graphics and compute API.

Which topics are currently not in focus of development?

	We are currently focusing on the renderer and Vulkan API. When the time has come, we will take parallelization into account.

	A game engine needs other components besides rendering of course. However, we are currently not focusing on the following topics: networking, sound, physics, packaging of game engine resources and everything else which is not related to rendering.

	We will not begin to support additional platforms besides Linux and Windows in the near future.

Development

	Supported platforms
	Microsoft Windows

	Linux

	macOS and iOS

	Android

	Getting started
	Required Software

	Optional Software

	Does my graphics card support Vulkan?

	Update your graphics drivers!

	Building vulkan-renderer
	Windows

	Linux

	Debugging
	Logfiles

	Command Line Arguments

	RenderDoc

	VMA dumps

	Engine design
	Folder structure

	Dependency management

	Coding style

	Code design

	Design patterns

	Regressions

	Continuous integration

	Clang format

	Test automation

	Benchmarking

	Static code analysis

	Reference
	GPU selection mechanism

	Binary Format Specification

	Keyboard and mouse input

	Octree File Format

	Multi octree collision detection

	Management of command pools and command bufers

	GitHub Issue Labeling

Supported platforms

	Vulkan API is completely platform-agnostic, which allows it to run on various operating systems.

	The required drivers for Vulkan are usually part of your graphic card’s drivers.

	Update your graphics drivers as often as possible since new drivers with Vulkan updates are released frequently.

	Driver updates contain new features, bug fixes, and performance improvements.

	Check out Khronos website [https://www.khronos.org/vulkan/] for more information.

Microsoft Windows

	We support x64 Microsoft Windows 8, 8.1 and 10.

	We have build instructions for Windows.

Linux

	We support every x64 Linux distribution for which Vulkan drivers exist.

	We have specific build instructions for Gentoo, Ubuntu, Debian, and Arch..

	If you have found a way to set it up for other Linux distributions, please open a pull request [https://github.com/inexorgame/vulkan-renderer/pulls] and let us know!

macOS and iOS

	We do not support macOS or iOS because it would require us to use MoltenVK [https://github.com/KhronosGroup/MoltenVK] to get Vulkan running on Mac OS.

	Additionally, this would require some changes in the engines as not all of Inexor’s dependencies are available on macOS or iOS.

Android

	We also do not support Android because this would require some changes in the engines as not all of Inexor’s dependencies are available on Android.

Getting started

Also see the building instructions (Windows/Linux).

Required Software

	Git [https://www.git-scm.com/]
	Git for cloning (downloading) the source code.

	Python [https://www.python.org/] with pip [https://pypi.org/project/pip/]
	Required for generating the documentation and the C++ package manager.

	CMake [https://cmake.org/]
	The build generator which generates project files for various IDEs.

	Vulkan SDK [https://vulkan.lunarg.com/sdk/home]
	Vulkan SDK contains the libraries and tools which are necessary to work with Vulkan API.

Update your Vulkan SDK as often as possible, because new versions will be released frequently which contains new features and bug fixes.

Make sure you add the glslangValidator in the Vulkan SDK’s bin folder to your path variable.

Optional Software

	GitKraken Git GUI [https://www.gitkraken.com/git-client].
	A Git user interface with many features which is easy to use.

	GitHub Desktop [https://desktop.github.com/]
	An open source Git user interface which is easy to use.

	Ninja Build System [https://ninja-build.org/]
	Improve your build times with ninja.

	RenderDoc [https://renderdoc.org/]
	Powerful open source graphics debugger. Inexor has full RenderDoc integration.

	Doxygen [http://www.doxygen.nl/download.html]
	Required for generating the documentation.

	Notepad++ [https://notepad-plus-plus.org/downloads/]
	Free and open source text editor.

	Atom.io [https://atom.io/]
	Free and open source text editor.

	Visual Studio Code [https://code.visualstudio.com/]
	Free and open source text editor.

Does my graphics card support Vulkan?

	You can look up your graphics card in Sascha Willem’s Vulkan hardware database [https://vulkan.gpuinfo.org/].

	Every new graphics card which is coming out these days supports Vulkan API.

	Vulkan is also supported on older graphics cards going back to Radeon HD 7000 series [https://en.wikipedia.org/wiki/Radeon_HD_7000_series] and Nvidia Geforce 6 series [https://en.wikipedia.org/wiki/GeForce_6_series].

Update your graphics drivers!

	Update your graphics drivers as often as possible.

	New drivers contain new features, bug fixes, and performance improvements.

Building vulkan-renderer

	Windows

	Linux

Also see Getting started.

If you have any trouble please open a ticket [https://github.com/inexorgame/vulkan-renderer/issues] or join our Discord server [https://discord.com/invite/acUW8k7].

This project uses out of source builds using either gcc [https://gcc.gnu.org/], clang [https://clang.llvm.org/] or Microsoft Visual Studio [https://visualstudio.microsoft.com/en/downloads/] compiler.

Generating the documentation will create two subfolders in doc which will be ignored by git.

The following CMake targets and options are available:

List of CMake build targets.

	build target

	description

	comment

	inexor-vulkan-renderer

	The main executable.

	

	inexor-vulkan-renderer-tests

	Tests the renderer using Google Test [https://github.com/google/googletest].

	There are no tests available yet.

	inexor-vulkan-renderer-benchmark

	Benchmarking of the renderer using Google Benchmark [https://github.com/google/benchmark].

	There are no benchmarks available yet.

	inexor-vulkan-renderer-documentation

	Builds the documentation with Sphinx [https://www.sphinx-doc.org/en/master/]. Enable target creation with -DINEXOR_BUILD_DOC=ON.

	

	inexor-vulkan-renderer-documentation-linkcheck

	Use sphinx’s linkcheck feature to search for broken links.

	

List of CMake options.

	option

	description

	default value

	INEXOR_BUILD_EXAMPLE

	Builds inexor-renderer-example.

	ON

	INEXOR_BUILD_TESTS

	Builds inexor-renderer-tests.

	OFF

	INEXOR_BUILD_BENCHMARKS

	Builds inexor-renderer-benchmarks.

	OFF

	INEXOR_BUILD_DOC

	Builds the documentation with Sphinx [https://www.sphinx-doc.org/en/master/].

	OFF

	INEXOR_BUILD_DOCUMENTATION_USE_VENV

	Generate and use a Python virtual environment for the documentation dependencies.

	ON

Windows

Example: Create Visual Studio 2022 project map for Debug mode including docs, tests, and benchmarks:

cmake -G "Visual Studio 17 2022" -A x64 -B./cmake-build-debug-vs/ -DCMAKE_BUILD_TYPE=Debug -DINEXOR_BUILD_DOC=ON -DINEXOR_BUILD_TESTS=ON -DINEXOR_BUILD_BENCHMARKS=ON ./

Example: Create Visual Studio 2022 project map for Release mode but without docs, tests, and benchmarks:

cmake -G "Visual Studio 17 2022" -A x64 -B./cmake-build-release-vs/ -DCMAKE_BUILD_TYPE=Release ./

If you have Ninja build system [https://ninja-build.org/] installed, you can use it like this:

executing from project root assumed
Ninja generator and Debug type
\> cmake -G Ninja -B./cmake-build-debug/ -DCMAKE_BUILD_TYPE=Debug ./
Ninja generator and Release type
\> cmake -G Ninja -B./cmake-build-release/ -DCMAKE_BUILD_TYPE=Release ./
Create Visual Studio Solution
\> cmake -G "Visual Studio 17 2022" -A x64 -B./cmake-build-debug-vs/ -DCMAKE_BUILD_TYPE=Debug ./
Build all targets
\> cmake --build ./cmake-build-debug/

	Choose any IDE that CMake can generate a project map for. If in doubt use Visual Studio 2022 [https://visualstudio.microsoft.com/].

	Clone the source code. Free and good tools are GitHub Desktop [https://desktop.github.com/] or GitKraken Git GUI [https://www.gitkraken.com/git-client].

	Open CMake and select the root folder which contains CMakeLists.txt (not just src folder!).

	You can choose any location for the build folder.

	Click “Configure” and select your IDE (in doubt Visual Studio 17 2022). Click “Finish”.

	CMake will now set up dependencies automatically for you. This might take a while. If this fails, you really should open a ticket!

	Click “Generate”. You can now open the Visual Studio project file in your build folder.

	For debugging, please check that the root directory of the repository is set as working directory in Visual Studio. Usually, CMake should take care of this already.

	You are now ready to start debugging! Our main branch must be stable at all cost.

Linux

Install dependencies and tools:

	Ubuntu

	Follow the
Install the SDK [https://vulkan.lunarg.com/doc/view/latest/linux/getting_started_ubuntu.html#user-content-install-the-sdk]-instructions on
the vulkan-sdk page.

Install the required packages:

apt install -y \
 pkg-config \
 libglm-dev \
 libxcb-dri3-0 \
 libxcb-present0 \
 libpciaccess0 \
 libpng-dev \
 libxcb-keysyms1-dev \
 libxcb-dri3-dev \
 libx11-dev \
 libmirclient-dev \
 libwayland-dev \
 libxrandr-dev \
 libxcb-ewmh-dev
apt install -y \
 cmake \
 ninja-build \
 clang-tidy \
 vulkan-sdk \
 python3 \
 python3-pip
$ pip3 install \
 wheel \
 setuptools \

	Gentoo

	# emerge \
 dev-util/cmake \
 dev-util/vulkan-headers \
 dev-util/vulkan-tools \
 dev-vcs/git \
 media-libs/vulkan-layers \
 media-libs/vulkan-loader

Install ninja build tool (optional):

emerge dev-util/ninja

	Debian

	Follow the
Install the SDK [https://vulkan.lunarg.com/doc/view/latest/linux/getting_started_ubuntu.html#user-content-install-the-sdk]-instructions on
the vulkan-sdk page.

Install the required packages:

apt install -y \
 libvulkan-dev \
 glslang-dev \
 glslang-tools \
 vulkan-tools \
 vulkan-validationlayers-dev \
 spirv-tools \
 pkg-config \
 libglm-dev \
 libxcb-dri3-0 \
 libxcb-present0 \
 libpciaccess0 \
 libpng-dev \
 libxcb-keysyms1-dev \
 libxcb-dri3-dev \
 libx11-dev \
 libmirclient-dev \
 libwayland-dev \
 libxrandr-dev \
 libxcb-ewmh-dev
apt install -y \
 cmake \
 ninja-build \
 clang-tidy \
 vulkan-sdk \
 python3 \
 python3-pip
$ pip3 install \
 wheel \
 setuptools \

	Arch

	Follow the
Install the SDK [https://vulkan.lunarg.com/doc/view/latest/linux/getting_started_ubuntu.html#user-content-install-the-sdk]-instructions on
the vulkan-sdk page.

Install the required packages:

pacman -S --noconfirm \
 pkg-config \
 glslang \
 spirv-tools \
 glm \
 libice \
 libpciaccess \
 libpng \
 libx11 \
 libxres \
 xkeyboard-config \
 libxrandr \
 libxcb \
 libxaw \
 xcb-util \
 xtrans \
 libxvmc
pacman -S --noconfirm \
 cmake \
 ninja \
 vulkan-headers \
 vulkan-tools \
 vulkan-validation-layers \
 python3 \
 python-pip
$ pip3 install \
 wheel \
 setuptools \

	Fedora

	Install the required packages:

dnf install -y \
 git \
 cmake \
 gcc \
 gcc-c++ \
 ninja-build \
 vulkan \
 libvkd3d \
 vulkan-loader-devel \
 python3-pip \
 libglvnd-devel \
 libfontenc-devel \
 libXaw-devel \
 libXcomposite-devel \
 libXcursor-devel \
 libXdmcp-devel \
 libXtst-devel \
 libXinerama-devel \
 libxkbfile-devel \
 libXrandr-devel \
 libXres-devel \
 libXScrnSaver-devel \
 libXvMC-devel \
 xorg-x11-xtrans-devel \
 xcb-util-wm-devel \
 xcb-util-image-devel \
 xcb-util-keysyms-devel \
 xcb-util-renderutil-devel \
 libXdamage-devel \
 libXxf86vm-devel \
 libXv-devel \
 xcb-util-devel \
 libuuid-devel \
 xkeyboard-config-devel \
 glslang-devel

	Other

	Planned. We would love to see a
pull request on this file if you get
it running on other
distributions. [https://github.com/inexorgame/vulkan-renderer/blob/main/documentation/source/development/building.rst]

Clone the repository:

$ git clone https://github.com/inexorgame/vulkan-renderer
$ cd vulkan-renderer

Configure cmake:

Note

Only pass -GNinja if the ninja build tool is installed.

$ cmake . \
 -Bbuild \
 -DCMAKE_BUILD_TYPE=Debug \
 -GNinja

Build and run:

If you have any trouble please open a ticket [https://github.com/inexorgame/vulkan-renderer/issues] or join our Discord server [https://discord.com/invite/acUW8k7].

$ cmake --build build --target inexor-vulkan-renderer-example
$./build/bin/inexor-vulkan-renderer-example

Debugging

	Logfiles

	Command Line Arguments

	RenderDoc

	VMA dumps

Logfiles

Inexor uses spdlog [https://github.com/gabime/spdlog] for both console logging and logfiles.

[image: Example of Inexor engine console output.]
The log output which can be seen in the console will also be written to vulkan-renderer.log in the root directory.

You can open and read this logfile with a text editor of your choice.

We are using the following log entry format %Y-%m-%d %T.%f %^%l%$ %5t [%-10n] %v.

	%Y is the year.

	%m is the month (01 to 12).

	%d is the day of month (01 to 31).

	%T is ISO 8601 [https://en.wikipedia.org/wiki/ISO_8601] time format (HH:MM:SS).

	%f is the microsecond part of the current second.

	%^%l%$ is the color-coded [https://github.com/gabime/spdlog/wiki] log level.

	%5t is the thread id formatted to a string of length 5.

	[%-10n] is the name of the logger, limited to 10 characters.

	%v is the log message.

For more information, check out spdlog’s documentation about custom formatting [https://github.com/gabime/spdlog/wiki/3.-Custom-formatting].

Use the following rules for logging:

	Don’t use std::cout or printf or similar. Just use spdlog instead.

	Place as many log messages to your code as possible.

	End log messages with a . to show that the message is finished.

	Use all log levels as you need it: spdlog::trace, spdlog::info, spdlog::debug, spdlog::error, spdlog::critical.

	You can print variables with spdlog (see this reference [https://fmt.dev/latest/syntax.html]) because it is based on fmt library [https://github.com/fmtlib/fmt].

	Use direct API calls like spdlog::debug("Example text here"); instead of creating your own logger name for now. We will come up with a strategy for logger hierarchy later.

Command Line Arguments

You can start vulkan-renderer with the following command line arguments:

	
--gpu <index>

	Specifies which GPU to use by array index, starting from 0.

Note

The engine checks if this index is valid. If the index is invalid, automatic GPU selection rules apply.

	
--no-separate-data-queue

	Disables the use of the special data transfer queue [https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#devsandqueues-queues] (forces use of the graphics queue).

Warning

Enabling this option could decrease the overall performance. Don’t enable this option unless you have to.

	
--no-validation

	Disables Vulkan validation layers [https://github.com/KhronosGroup/Vulkan-ValidationLayers].

Warning

You should never disable validation layers because they offer extensive error checks for debugging.

	
--no-vk-debug-markers

	Disables Vulkan debug markers [https://www.saschawillems.de/blog/2016/05/28/tutorial-on-using-vulkans-vk_ext_debug_marker-with-renderdoc/] (even if --renderdoc is specified).

	
--renderdoc

	Enables the RenderDoc [https://renderdoc.org/] debug layer.

	
--vsync

	

Warning

Vsync is currently not implemented. The command line argument will be ignored.

Enables vertical synchronization [https://en.wikipedia.org/wiki/Analog_television#Vertical_synchronization] (limits FPS to monitor refresh rate).

RenderDoc

	RenderDoc [https://renderdoc.org/] is a free and open source graphics debugger for Vulkan API (and other APIs) developed by Baldur Karlsson [https://github.com/baldurk].

	It is a very powerful graphics debugging and visualization tool which makes debugging Vulkan application as easy as possible.

	Inexor has full RenderDoc integration. This includes internal resource naming using Vulkan debug markers [https://www.saschawillems.de/blog/2016/05/28/tutorial-on-using-vulkans-vk_ext_debug_marker-with-renderdoc/].

	The following tutorial shows how to debug Inexor using RenderDoc.

	You can read up more details in RenderDoc’s documentation [https://renderdoc.org/docs/getting_started/quick_start.html].

RenderDoc Tutorial for Windows

Step 1: Open Inexor in Visual Studio and add a breakpoint before Vulkan initialization

	The best spot would be right after main():

[image: A breakpoint after the main function in Visual Studio debugger.]

Step 2: Open RenderDoc.

[image: RenderDoc right after starting it.]

Step 3: Start debugging inexor-vulkan-renderer and halt at the breakpoint

[image: Visual Studio interrupts the program because of a breakpoint.]

Step 4: “Inject into process” inexor-vulkan-renderer.exe using RenderDoc

[image: "Inject into process" in RenderDoc's menu.]

Step 5: Search for “inexor-vulkan-renderer.exe” and click “inject”

	You will see a warning Windows Firewall the first time you do this.

	This is because RenderDoc is reading memory from inexor-vulkan-renderer.

	Accept the Windows Firewall warning to allow RenderDoc to read memory.

[image: Injecting into inexor-vulkan-renderer.]

Step 6: Continue debugging in Visual Studio

	RenderDoc should now look like this.

[image: Injecting into inexor-vulkan-renderer.]

	Press F5 to continue program execution from the breakpoint.

	RenderDoc is now connected to inexor-vulkan-renderer:

[image: RenderDoc is connected inexor-vulkan-renderer.]

	You can see RenderDoc’s overlay in inexor-vulkan-renderer.exe:

[image: Taking a RenderDoc snapshot.]

Step 7: Debug inexor-vulkan-renderer.exe as usual and press F12 to take RenderDoc snapshots

	You can take multiple snapshots with either PRINT or F12 key.

[image: Taking a RenderDoc snapshot.]

	You can see the snapshots in RenderDoc right after you took them:

[image: Taking a RenderDoc snapshot.]

Step 8: Open a snapshot to analyze the rendering of this frame

	Double click on a snapshot to open it:

[image: Taking a RenderDoc snapshot.]

	Have fun inspecting!

VMA dumps

	For memory management, Inexor uses AMD’s Vulkan Memory Allocator library (VMA) [https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator].

	VMA can export an overview of the current GPU memory allocations into a JSON file which can be converted into an image using VMA’s VmaDumpVis [https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator/tree/master/tools/GpuMemDumpVis].

	This way we can see which memory pools exist, which memory blocks are allocated, and what they are used for.

	The example image provided here might look very simple, but with increasing complexity of our engine this will turn out very helpful.

This is a very simple example of such an image generated with VmaDumpVis:

[image: Example of a memory allocation overview generated by VmaDumpVis.]
Example: march 2020 texture memory corruption bug

	In march 2020, a bug in Inexor’s early graphics memory management [https://community.khronos.org/t/texture-corruption-when-window-is-resized/105456] caused textures to corrupt on window resize.

	VmaDumpVis helped to resolve the issue by proving the memory consumption increased after each resize, which means the texture memory was simply not freed when the swapchain was recreated.

	This is an example of how VMA and VmaDumpVis make debugging graphics memory easier.

[image: Example of a VmaDumpVis being used to detect memory leaks.]

Engine design

Folder structure

	Use lowercase filenames

	Don’t use spaces, use underscores.

Source code

connector/ «project root»
├── .clang-format «Clang Format configuration»
├── .clang-tidy «Clang Tidy configuration»
├── .git-blame-ignore-revs «git ignore revisions»
├── .gitignore «git ignore»
├── .readthedocs.yml «Read The Docs configuration»
├── CHANGELOG.rst
├── CMakeLists.txt
├── CODE_OF_CONDUCT.md
├── CONTRIBUTING.md
├── LICENSE.md
├── README.rst
├── .github/ «GitHub templates and action configurations»
├── assets/
│ ├── models/
│ └── textures/ «textures»
├── benchmarks/
├── cmake/ «CMake helpers»
├── configuration/
├── documentation/
│ ├── CMakeLists.txt «CMake file for the documentation»
│ ├── cmake/ «documentation cmake helpers»
│ └── source/ «documentation source code»
├── example/ «example application»
├── include/ «header files»
├── shaders/
├── src/ «source code»
├── tests/
├── third_party/ «third party dependencies»
└── vma-dumps/

Application

vulkan-renderer/ «application root»
├── inexor-vulkan-renderer.exe «executable»
├── ...
├── assets/
├── shaders/
└── ...

Dependency management

	In general we try to keep the number of dependencies at a minimum.

	Dependencies are downloaded directly by CMake.

Criteria for library selection

If we really need a new library, it should be selected based on the following considerations:

	Are you sure we need this library? Can’t we solve the problem with C++ standard library or some other library we are already using?

	The library must have an open source license which is accepted by us (see Licenses).

	It must be in active development.

	It must have a good documentation.

	A sufficient number of participants must have contributed so we can be sure it is reviewed.

Coding style

The easiest way to get the right format is to use the provided clang-format [https://clang.llvm.org/docs/ClangFormat.html] file in the root directory.

Other styles which cannot be applied automatically are listed below:

	Use #pragma once as include guards

	Own headers are included with quotes

	
	Includes are ordered as follows
	
	Own headers

	empty line

	Third Party Libraries

	empty line

	System Libraries

	Use C++17 namespace style namespace inexor::vulkan-renderer

	No using <namespace>

	For default member initialization use brace instead of equal initialization

	Prefer American English over British English

	Use spaces to indent

	Use Linux line ends (ln) in your commits

	Use /// for multiline documentation instead of /**/

Naming convention

Open the .clang-tidy file and search for readability-identifier-naming to get the naming convention used by this project.

Error handling

	Use exceptions for error handling, as proposed by the C++ core guidelines [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-errors].

	More information about why to use exceptions can be found here [https://isocpp.org/wiki/faq/exceptions].

Get methods

	Name: Don’t use prefix get_. Give the get method the same name as the resource it returns.

	For complex types (std::vector, std::string), return a const reference.

	Don’t const the return type for simple types (int, float), because this prevents move semantics to be applied.

	For simple types (int, float), just copy the return value.

	Mark get methods as [[nodiscard]] in the header file only.

	Mark get methods as const, so they don’t change members.

	Do not add documentation for get methods, since it is self-explanatory.

	Keep get methods directly in the header file.

	Do not add inline since get methods in header files are always inlined.

	The get method should not run any other code, like checking if the value is actually valid. Since we are using RAII, the value to return must be in a valid state anyways.

	Use operator overloading sparingly. Prefer get methods instead.

Examples:

[[nodiscard]] const glm::vec3& position() const {
 return m_position;
}

[[nodiscard]] float aspect_ratio() const {
 return m_aspect_ratio;
}

Removed clang-tidy checks

	bugprone-narrowing-conversions
	Same as cppcoreguidelines-narrowing-conversions

	cppcoreguidelines-avoid-magic-numbers
	Alias of readability-magic-numbers

	cppcoreguidelines-c-copy-assignment-signature
	Alias of misc-unconventional-assign-operator

	cppcoreguidelines-non-private-member-variables-in-classes
	Alias of misc-non-private-member-variables-in-classes

	cppcoreguidelines-pro-bounds-array-to-pointer-decay
	Not suitable for this project.

	google-readability-todo
	We do not care about any TODO assignments or related issues.

	hicpp-explicit-conversions
	Alias of google-explicit-constructor

	hicpp-move-const-arg
	Alias of performance-move-const-arg

	hicpp-no-array-decay
	Alias of cppcoreguidelines-pro-bounds-array-to-pointer-decay

	hicpp-uppercase-literal-suffix
	Alias of readability-uppercase-literal-suffix

	llvm-header-guard
	#pragma once is used.

	modernize-use-trailing-return-type
	Trailing return types are not used.

	readability-magic-numbers
	Too many places where it would be useless to introduce a constexpr value.

	readability-uppercase-literal-suffix
	Just a style preference.

Code design

Literature

The following books inspired Inexor’s code design:

	Bjarne Stroustrup: The C++ Programming Language (4th Edition) [https://www.stroustrup.com/4th.html]

	Scott Meyers: Effective Modern C++ [https://www.oreilly.com/library/view/effective-modern-c/9781491908419/]

	Scott Meyers: Effective C++: 55 Specific Ways to Improve Your Programs and Designs, Third Edition [https://www.oreilly.com/library/view/effective-c-55/0321334876/]

	Scott Meyers: Effective STL [https://www.oreilly.com/library/view/effective-stl/9780321545183/]

	Nicolai M. Josuttis: C++ Move Semantics - The Complete Guide [https://leanpub.com/cppmove]

	Nicolai M. Josuttis: C++ Templates - The Complete Guide, 2nd Edition [http://www.tmplbook.com/]

	Bartłomiej Filipek C++ Lambda Story [https://leanpub.com/cpplambda]

	Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns: Elements of Reusable Object-Oriented Software [https://www.oreilly.com/library/view/design-patterns-elements/0201633612/]

	Robert C. Martin: Clean Code: A Handbook of Agile Software Craftsmanship [https://www.oreilly.com/library/view/clean-code-a/9780136083238/]

	Robert C. Martin: The Clean Coder: A Code of Conduct for Professional Programmers [https://www.oreilly.com/library/view/the-clean-coder/9780132542913/]

	Robert C. Martin: Clean Architecture: A Craftsman’s Guide to Software Structure and Design, First Edition [https://www.oreilly.com/library/view/clean-architecture-a/9780134494272/]

	Fedor G. Pikus: Hands-On Design Patterns with C++ [https://www.packtpub.com/product/hands-on-design-patterns-with-c/9781788832564]

	Rian Quinn: Advanced C++ Programming Cookbook [https://subscription.packtpub.com/book/programming/9781838559915]

General considerations

	Organize the code in components.

	Split declarations and definitions, if possible.

	Make appropriate use of the standard library.

	Avoid data redundancy in the engine. Do not keep memory copied unnecessarily.

	Do not duplicate code. Find an appropriate abstraction which accounts for the scenario.

	Try to keep dependencies between components at minimum because single components (e.g. classes) should be as recyclable as possible.

	Use spdlog [https://github.com/gabime/spdlog] instead of printf or std::cout for console output.

	Use assert to validate parameters or necessary resources during development (debug mode).

	Document the code using doxygen [http://doxygen.nl/] comments. Code without documentation is almost useless.

	Make sure the code is platform-independent. For now, we will support Windows and Linux but not Mac OS.

	Use Vulkan memory allocator library [https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator] for Vulkan-specific memory allocations like buffers.

	Do not allocate memory manually. Use modern ++ features like smart pointers [https://en.cppreference.com/book/intro/smart_pointers] or STL containers instead.

	Don’t use global variables [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#i22-avoid-complex-initialization-of-global-objects].

	Don’t use the singleton pattern [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-singleton] as it makes thread safety and refactoring difficult.

	Don’t use call-by-value for returning values from a function call.

	Don’t use macros for code generation or as a replacement for enumerations.

C++ core guidelines

	The C++ code guidelines [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines] are a set of rules to use for modern C++ projects created by the C++ community.

	In the following section, we will list up the entries which are of considerable interest for the Inexor project.

	There will be some gaps in the number as we skipped some of the less importer ones.

	Also the code guidelines have gaps by default (blank space for new rules).

Philosophy

	P.1: Express ideas directly in code [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-direct]

	P.3: Express intent [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-what]

	P.4: Ideally, a program should be statically type safe [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-typesafe]

	P.5: Prefer compile-time checking to run-time checking [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#p5-prefer-compile-time-checking-to-run-time-checking]

	P.8: Don’t leak any resources [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#p8-dont-leak-any-resources]

	P.9: Don’t waste time or space [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-waste]

	P.10: Prefer immutable data to mutable data [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-mutable]

	P.11: Encapsulate messy constructs, rather than spreading through the code [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-library]

Interfaces

	I.1: Make interfaces explicit [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-explicit]

	I.4: Make interfaces precisely and strongly typed [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-typed]

	I.5: State preconditions (if any) [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-pre]

	I.7: State postconditions [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-post]

	I.10: Use exceptions to signal a failure to perform a required task [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-except]

	I.11: Never transfer ownership by a raw pointer (T*) or reference (T&) [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-raw]

	I.13: Do not pass an array as a single pointer [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-array]

	I.23: Keep the number of function arguments low [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-nargs]

	I.24: Avoid adjacent parameters of the same type when changing the argument order would change meaning [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-unrelated]

Functions and class methods

	F.1: “Package” meaningful operations as carefully named functions [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-package]

	F.2: A function should perform a single logical operation [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-logical]

	F.4: If a function may have to be evaluated at compile time, declare it constexpr [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-constexpr]

	F.7: For general use, take T* or T& arguments rather than smart pointers [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-smart]

	F.15: Prefer simple and conventional ways of passing information [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-conventional]

	F.16: For “in” parameters, pass cheaply-copied types by value and others by reference to const [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-in]

	F.18: For “will-move-from” parameters, pass by X&& and std::move the parameter [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-consume]

	F.20: For “out” output values, prefer return values to output parameters [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-out]

	F.21: To return multiple “out” values, prefer returning a struct or tuple [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-out-multi]

	F.26: Use a unique_ptr<T> to transfer ownership where a pointer is needed [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-unique_ptr]

	F.27: Use a shared_ptr<T> to share ownership [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-shared_ptr]

	F.43: Never (directly or indirectly) return a pointer or a reference to a local object [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-dangle]

	F.45: Don’t return a T&& [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-return-ref-ref]

	F.51: Where there is a choice, prefer default arguments over overloading [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-default-args]

	F.55: Don’t use va_arg arguments [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#F-varargs]

Classes

	C.2: Use class if the class has an invariant; use struct if the data members can vary independently [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-struct]

	C.3: Represent the distinction between an interface and an implementation using a class [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-interface]

	C.4: Make a function a member only if it needs direct access to the representation of a class [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-member]

	C.7: Don’t define a class or enum and declare a variable of its type in the same statement [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-standalone]

	C.8: Use class rather than struct if any member is non-public [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-class]

	C.9: Minimize exposure of members [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-private]

Enumerations

	Enum.1: Prefer enumerations over macros [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-macro]

	Enum.2: Use enumerations to represent sets of related named constants [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-set]

	Enum.3: Prefer class enums over “plain” enums [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-class]

	Enum.6: Avoid unnamed enumerations [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-unnamed]

	Enum.7: Specify the underlying type of an enumeration only when necessary [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-underlying]

Resource management

	R.1: Manage resources automatically using resource handles and RAII (Resource Acquisition Is Initialization) [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-raii]

	R.2: In interfaces, use raw pointers to denote individual objects (only) [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-use-ptr]

	R.3: A raw pointer (a T*) is non-owning [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-ptr]

	R.4: A raw reference (a T&) is non-owning [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-ref]

	R.5: Prefer scoped objects, don’t heap-allocate unnecessarily [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-scoped]

	R.10: Avoid malloc() and free() [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-mallocfree]

	R.11: Avoid calling new and delete explicitly [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-newdelete]

	R.12: Immediately give the result of an explicit resource allocation to a manager object [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-immediate-alloc]

	R.13: Perform at most one explicit resource allocation in a single expression statement [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-single-alloc]

Classes

	C.30: Define a destructor if a class needs an explicit action at object destruction [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c30-define-a-destructor-if-a-class-needs-an-explicit-action-at-object-destruction]

	C.31: All resources acquired by a class must be released by the class’s destructor [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c31-all-resources-acquired-by-a-class-must-be-released-by-the-classs-destructor]

	C.35: A base class destructor should be either public and virtual, or protected and non-virtual [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c35-a-base-class-destructor-should-be-either-public-and-virtual-or-protected-and-non-virtual]

	C.36: A destructor must not fail [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-fail]

	C.40: Define a constructor if a class has an invariant [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c40-define-a-constructor-if-a-class-has-an-invariant]

	C.41: A constructor should create a fully initialized object [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c41-a-constructor-should-create-a-fully-initialized-object]

	C.42: If a constructor cannot construct a valid object, throw an exception [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c42-if-a-constructor-cannot-construct-a-valid-object-throw-an-exception]

	C.43: Ensure that a copyable (value type) class has a default constructor [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c43-ensure-that-a-copyable-value-type-class-has-a-default-constructor]

	C.44: Prefer default constructors to be simple and non-throwing [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c44-prefer-default-constructors-to-be-simple-and-non-throwing]

	C.46: By default, declare single-argument constructors explicit [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c46-by-default-declare-single-argument-constructors-explicit]

	C.47: Define and initialize member variables in the order of member declaration [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c47-define-and-initialize-member-variables-in-the-order-of-member-declaration]

	C.49: Prefer initialization to assignment in constructors [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c49-prefer-initialization-to-assignment-in-constructors]

	C.62: Make copy assignment safe for self-assignment [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c62-make-copy-assignment-safe-for-self-assignment]

	C.64: A move operation should move and leave its source in a valid state [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c64-a-move-operation-should-move-and-leave-its-source-in-a-valid-state]

	C.65: Make move assignment safe for self-assignment [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c65-make-move-assignment-safe-for-self-assignment]

	C.80: Use =default if you have to be explicit about using the default semantics [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c80-use-default-if-you-have-to-be-explicit-about-using-the-default-semantics]

	C.81: Use =delete when you want to disable default behavior (without wanting an alternative) [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c81-use-delete-when-you-want-to-disable-default-behavior-without-wanting-an-alternative]

	C.82: Don’t call virtual functions in constructors and destructors [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c82-dont-call-virtual-functions-in-constructors-and-destructors]

	C.90: Rely on constructors and assignment operators, not memset and memcpy [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c90-rely-on-constructors-and-assignment-operators-not-memset-and-memcpy]

	C.129: When designing a class hierarchy, distinguish between implementation inheritance and interface inheritance [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c129-when-designing-a-class-hierarchy-distinguish-between-implementation-inheritance-and-interface-inheritance]

	C.131: Avoid trivial getters and setters [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c131-avoid-trivial-getters-and-setters]

	C.132: Don’t make a function virtual without reason [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c132-dont-make-a-function-virtual-without-reason]

	C.133: Avoid protected data [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c133-avoid-protected-data]

Follow rule of 0 and rule of 5

	C.20 If you can avoid defining default operations, do [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-zero]

	C.21: If you define or =delete any copy, move, or destructor function, define or =delete them all [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c21-if-you-define-or-delete-any-copy-move-or-destructor-function-define-or-delete-them-all]

Performance

	Per.1: Don’t optimize without reason [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-reason]

	Per.2: Don’t optimize prematurely [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per2-dont-optimize-prematurely]

	Per.3: Don’t optimize something that’s not performance critical [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per3-dont-optimize-something-thats-not-performance-critical]

	Per.4: Don’t assume that complicated code is necessarily faster than simple code [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per4-dont-assume-that-complicated-code-is-necessarily-faster-than-simple-code]

	Per.5: Don’t assume that low-level code is necessarily faster than high-level code [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per5-dont-assume-that-low-level-code-is-necessarily-faster-than-high-level-code]

	Per.6: Don’t make claims about performance without measurements [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per6-dont-make-claims-about-performance-without-measurements]

	Per.11: Move computation from run time to compile time [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per11-move-computation-from-run-time-to-compile-time]

Design patterns

	Check out Refactoring Guru [https://refactoring.guru/design-patterns] to learn more about software design patterns [https://en.wikipedia.org/wiki/Software_design_pattern].

	Don’t use the singleton pattern [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-singleton] as it makes thread safety and refactoring difficult.

	Use the builder pattern [https://refactoring.guru/design-patterns/builder] for composition of complicated data structures.

	An example of a builder pattern would be the descriptor builder [https://github.com/inexorgame/vulkan-renderer/blob/main/src/vulkan-renderer/wrapper/descriptor_builder.cpp].

Regressions

	If something used to work but it’s broken after a certain commit, it’s not just some random bug.

	It’s probably an issue which was introduced by the code change which was submitted.

	It’s important for us to keep working features in a stable state.

	You can use git bisect for tracing of the commit which introduced the bug.

Continuous integration

	The main branch and the build system must stay stable at all time.

	You can see the current status of the main branch in the build batch:

[image: github actions] [https://github.com/inexorgame/vulkan-renderer/actions?query=workflow%3A%22Build%22]

	Currently we are using GitHub Actions [https://github.com/features/actions] for building with gcc [https://gcc.gnu.org/], clang [https://clang.llvm.org/] and Microsoft Visual Studio [https://visualstudio.microsoft.com/en/downloads/] on every push or pull request.

	This Continuous Integration (CI) [https://en.wikipedia.org/wiki/Continuous_integration] allows for automatic building and testing of our software.

	We also have a webhook [https://gist.github.com/jagrosh/5b1761213e33fc5b54ec7f6379034a22] which directly dispatches the build status into our Discord [https://discord.com/invite/acUW8k7]. This allows us to spot and fix broken code easily.

	Our CI setup [https://github.com/inexorgame/vulkan-renderer/blob/main/.github/workflows/build.yml] is inspired by a blog entry [https://www.asawicki.info/news_1655_how_to_use_vulkan_sdk_with_appveyor_and_travis_ci] by Adam Sawicki [https://github.com/adam-sawicki-a].

Clang format

	In order to have one unified code formatting style, we use clang-format [https://clang.llvm.org/docs/ClangFormat.html].

	Clang-format automatically formats source code according to a set of rules which a project needs to agree on.

	Our current style can be found in the clang-format file [https://github.com/inexorgame/vulkan-renderer/blob/main/.clang-format] file in the root folder of the repository [https://github.com/inexorgame/vulkan-renderer].

	We recommend to install plugins which auto format the code when the file is being saved.

	Instructions for how to enable clang-format in Microsoft Visual Studio [https://visualstudio.microsoft.com/] can be found here [https://devblogs.microsoft.com/cppblog/clangformat-support-in-visual-studio-2017-15-7-preview-1/].

	Other editors like Visual Studio Code [https://code.visualstudio.com/], Atom.io [https://atom.io/], Notepad++ [https://notepad-plus-plus.org/downloads/] and Sublime Text [https://www.sublimetext.com/] support this as well.

	Part of our Continuous Integration (CI) [https://en.wikipedia.org/wiki/Continuous_integration] are automated clang-format checks using GitHub actions [https://github.com/features/actions].

	Our setup of clang-format with GitHub actions can be here [https://github.com/inexorgame/vulkan-renderer/blob/main/.github/workflows/code_style.yml].

	A pull request will only be accepted if it follows those code formatting rules.

Example of clang-format checking a pull request along with gcc/clang/msvc build:

[image: Example of Continuous Integration (CI) at work.]

Test automation

	Inexor will use Google Test [https://github.com/google/googletest] for automated software testing [https://en.wikipedia.org/wiki/Test_automation] in the future.

	Running automatic tests using GitHub actions is not possible for Vulkan features since this requires a graphics card to be present.

	There are some services which offer test automation for rendering, but they are not free.

	The tests would have to run on the developer’s machine locally.

Benchmarking

	Inexor will use Google Benchmark [https://github.com/google/benchmark] in the future.

	Benchmarks can also not run in GitHub actions since testing Vulkan features would require a graphics card.

	The tests will run locally on the developer’s machine along with the tests.

Static code analysis

We analyze our source code regularly using static code analysis [https://en.wikipedia.org/wiki/Static_program_analysis].

The following tools are used:

	Clang-tidy [https://clang.llvm.org/extra/clang-tidy/].

	Microsoft Visual Studio code analysis [https://docs.microsoft.com/en-us/visualstudio/code-quality/?view=vs-2022].

	Valgrind [https://valgrind.org/], Callgrind [https://valgrind.org/docs/manual/cl-manual.html] and Cachegrind [https://valgrind.org/docs/manual/cg-manual.html].

Reference

	GPU selection mechanism

	Binary Format Specification

	Keyboard and mouse input

	Octree File Format

	Multi octree collision detection

	Management of command pools and command bufers

GPU selection mechanism

	In Vulkan API, the word physical device is a more general word for all types of graphics cards, integrated gpus and more

	If multiple physical devices are available on the system, Inexor engine is able to pick the most suitable one automatically

	The user can specify a preferred graphics card index with the command line argument --gpu <index> (starting with index 0!)

	If a preferred index is specified, the engine will verify if the index is valid and pick the physical device if it is suitable

	If the physical device specified by the user is not suitable because of technical reasons, automatic selection rules apply

	The engine calculates a score for every available physical device based on the device type and total video memory size

	If no physical devices are available or no suitable physical device could be chosen, an exception is thrown

Binary Format Specification

Comments start with //, everything after for the rest of the line is ignored.

Spaces can be used to improve the readability, but are not required. Spaces are preferred over tabs.

Variable or data type names are case sensitive.

Endianness

Available values are little and big.
When defining the reserved data type name ENDIANNESS, all other data types who do not define an own endianness are interpreted as this.

| ENDIANNESS : little // default value for all non defined

Data Types

Every data type name, can also be used as an variable name, they don’t interfere. Data types can be defined the following way | <name> : <bit size> - <endianness> // description, whereas - <endianness> is optional, if a default endianness is given.
The bit size can be set by a variable too.

| Bit : 1 - little // A bit, 0 or 1.
| uByte : 4 - little // An unsigned byte.
| uInt : 8 - little // unsigned integer

// or

| ENDIANNESS : little
| Bit : 1 // A bit, 0 or 1.
| uInt : 8 // unsigned integer

uInt : mySize = 0
| myType : mySize // My special type.

Struct Types

If you have compressed data, it can be easily described as a struct struct <name> {.
Members can be access with a dot.

struct SpecSummary {
 > uByte (1) : size // Size
 > uByte (1) : spec_a // Specification A
 > uByte (1) : spec_b // Specification B
}

> SpecSummary (1) : spec // specification summary

if (spec.size > 0) {
 read_spec()
}

Bit Reading & Variables

Each bit interpretation starts with >, whereas variable name and the reinterpreted type are optional. Variables are only valid in their declared scope.
<counter> is a value, how often the data type is read, it will create a list with its content.
If a reinterpreted type is given, it will be reinterpreted as if the amount of single bits was read by the reinterpretation type (> Bit (3) : uByte reinterprets 3 bits into one uByte).
If the reinterpreted type is bigger, it will be filled with 0 regarding to the endianness, to not change the value (e.g. little endianness will fill from the left side). Same with cutting it off.

> <data type> (<counter>) <reinterpreted type> : <variable name> // <description>
 ^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^ optional

// examples

> uByte (7) // string identifier: "myimage"
> uInt (1) : image_size // image size in bytes
> Bit (3) uByte : red_color // red color

> Bit (3) uByte // possible but does not make any sense, as the reinterpreted type will not be used.

uInt : other_size = image_size // declare new variable other_size with content of image_size
uInt : id = 0 // declare a new variable of type uInt and content 0

Conditions

if, else if, else. Available comparisons are ==, !=, <, >, <=, >=. Which can be combined with && (and) and || (or).
Brackets are not required around the condition, but can improve the readability.
You cannot compare a list to a number. You have to reinterpret it beforehand or cast it.

> Bit (2) uByte : roll_over // roll over simulation type
uInt : roll_over_int = roll_over
if (roll_over_int == 0) { // roll over specification 0
 > uInt (1) // roll over specifications
} else if (uInt(roll_over) == 1) { // roll over specification 1
 > uInt (1) // roll over specifications
 > uInt (1) // more roll over specifications
} else { // default roll over specification
 > uByte (1) // weight in kg
 > uInt (1) // roll over specifications
}

A short version for else if chaining is switch, case. default will be used if no other case matches.
There is no default fallthrough, to get this behaviour use fallthrough. A break inside a switch case will break out of it.

> Bit (2) uByte : roll_over // roll over simulation type
uInt : roll_over_int = roll_over
switch (roll_over_int) {
case 0: // roll over specification 0
 > uInt (1) // roll over specifications
case 1: // roll over specification 1
 > uInt (1) // roll over specifications
 > uInt (1) // more roll over specifications
default: // default roll over specification
 > uByte (1) // weight in kg
 > uInt (1) // roll over specifications
}

Loops

There are three types of loops: for, range-based for and a while loop.
Brackets are not required around the condition, but can improve the readability. You can break out of a loop with the break keyword.

for (id; id <= 3; id++) { // 0..2
 // ...
}

for (0..2 : id) { // including both borders 0 and 2
 // ...
}

uInt : id = 0
while (id <= 3) {
 // ...
 id = id + 1
}

uInt : id = 0
while (true) {
 if (id == 3) {
 break
 }
 // ...
 id = id + 1
}

Functions

Functions can be used to reuse a specific block again. def <name>(<parameter>) <return values> {}

def get_cube(uInt : param) uInt, uByte {
 > uInt (1) : first
 > uByte (1) : second
 return first, second
} // get_cube

> uInt (1) : rec_first
> uByte (1) : rec_second
rec_first, rec_second = get_cube()

Keyboard and mouse input

Inexor engine uses glfw3 [https://www.glfw.org/] for window management and for keyboard and mouse input. Inexor does not use manual polling [https://www.glfw.org/docs/3.3/group__input.html#ga67ddd1b7dcbbaff03e4a76c0ea67103a] of keyboard and mouse input data, but uses callbacks [https://www.glfw.org/docs/3.3/input_guide.html#input_keyboard] instead. This way, we ensure we are not missing a key event. For more information check out glfw’s input guide [https://www.glfw.org/docs/3.3/input_guide.html]. Inexor uses a wrapper class for keyboard and mouse input data, called KeyboardMouseInputData. This class offers an easy-to-use interface for setting and getting keyboard and mouse input. KeyboardMouseInputData is thread safe since pull request 401. [https://github.com/inexorgame/vulkan-renderer/pull/401]

Note

Inexor redirects keyboard and mouse input events to class methods which handle it. Because glfw is a C-style API, it is not possible to use class methods directly as callbacks for keyboard and mouse input data. To fix this, we set the glfw window user pointer to the class instance which contains the input callback methods. Then, we use a lambda to set up the class method as callback. All setups are done in Application::setup_window_and_input_callbacks. For more information about this workaround, check out this Stackoverflow issue [https://stackoverflow.com/questions/7676971/pointing-to-a-function-that-is-a-class-member-glfw-setkeycallback].

Note

It’s not possible handle glfw input data in a thread which is separate from the thread which created the corresponding window. For more information, check out this glfw forum post [https://discourse.glfw.org/t/multithreading-glfw/573].

Keyboard input

	We store the pressed keys as a std::array<bool, GLFW_KEY_LAST> member in KeyboardMouseInputData

	The maximum number of keys is defined by GLFW_KEY_LAST

	If a key is pressed or released, we notify KeyboardMouseInputData by calling method press_key and release_key, respectively

	Check if a key is currently pressed by calling method is_key_pressed

	Check if a key was pressed once by calling method was_key_pressed_once

Mouse input

	We store the pressed mouse buttons as a std::array<bool, GLFW_MOUSE_BUTTON_LAST> member in KeyboardMouseInputData

	The maximum number of mouse buttons is defined by GLFW_MOUSE_BUTTON_LAST.

	If a mouse button is pressed or released, we notify KeyboardMouseInputData by calling method press_mouse_button and release_mouse_button, respectively

	To update the current cursor position, we call set_cursor_pos

	To get the current cursor position, we call get_cursor_pos

	The change in cursor position can be queried with calculate_cursor_position_delta

	Check if a mouse button is pressed by calling method is_mouse_button_pressed

	Check if a mouse button was pressed once by calling method was_mouse_button_pressed_once

Joysticks

Inexor does not support joysticks [https://www.glfw.org/docs/3.3/input_guide.html#joystick] yet.

Octree File Format

The Inexor octree format describes the structure of the maps (and even models) created in Inexor.

Octree

[image: Octree Coordinates]The orange are coordinates of the corner, the pink of the block.

The position of a block is always the (0, 0, 0) corner coordinates.

Corner and Block Order

If blocks or corners are ordered, they use this order.

[image: Corner IDs]
Corner and Block Order

	ID

	Coordinate

	0

	(0, 0, 0)

	1

	(0, 0, 1)

	2

	(0, 1, 0)

	3

	(0, 1, 1)

	4

	(1, 0, 0)

	5

	(1, 0, 1)

	6

	(1, 1, 0)

	7

	(1, 1, 1)

Order of Faces

The following order of faces is used:

Order of Face

	ID

	Name

	Normal vector

	0

	left

	(-1, 0, 0)

	1

	right

	(1, 0, 0)

	2

	front

	(0, 1, 0)

	3

	back

	(0, -1, 0)

	4

	top

	(0, 0, 1)

	5

	bottom

	(0, 0, -1)

Order of Indices on Face

The following corner indices are associated to the faces:

Order of Indices on Face

	ID

	Indices

	0

	0, 1, 2, 3

	1

	4, 5, 6, 7

	2

	0, 1, 4, 5

	3

	2, 3, 6, 7

	4

	1, 3, 5, 7

	5

	0, 2, 4, 6

Edge Order

	All edges are going into the positive direction of the axis.

	The beginning of the edge is always the smaller corner id.

	If you look at a face, the edges are always numbered with an offset of 3.

	The edges are ordered counter-clockwise starting from the axis.

	A negative ID indicates the reverse direction (-axis).

[image: Edge IDs]
Edge Order

	ID

	Corner ID Tuple

	0

	(0, 4)

	1

	(0, 2)

	2

	(0, 1)

	3

	(2, 6)

	4

	(1, 3)

	5

	(4, 5)

	6

	(3, 7)

	7

	(5, 7)

	8

	(6, 7)

	9

	(1, 5)

	10

	(4, 6)

	11

	(2, 3)

Indentation

Every cube can be indented at each corner to all axis by 8 steps. In total there are 9 position/level on each axis.
The following diagram shows the indentation levels of Corner 1 on the x-axis.

[image: Octree indentation]Neighbors

Neighbor Order

	ID

	Relative Coordinates

	0

	(-1, -1, -1)

	1

	(-1, -1, 0)

	2

	(-1, -1, 1)

	3

	(-1, 0, -1)

	4

	(-1, 0, 0)

	5

	(-1, 0, 1)

	6

	(-1, 1, -1)

	7

	(-1, 1, 0)

	8

	(-1, 1, 1)

	9

	(0, -1, -1)

	10

	(0, -1, 0)

	11

	(0, -1, 1)

	12

	(0, 0, -1)

	13

	(0, 0, 1)

	14

	(0, 1, -1)

	15

	(0, 1, 0)

	16

	(0, 1, 1)

	17

	(1, -1, -1)

	18

	(1, -1, 0)

	19

	(1, -1, 1)

	20

	(1, 0, -1)

	21

	(1, 0, 0)

	22

	(1, 0, 1)

	23

	(1, 1, -1)

	24

	(1, 1, 0)

	25

	(1, 1, 1)

Format Specification

Using this binary format syntax.

Cube Types

	0 - EMPTY
	The cube does not exist