
Inexor Vulkan Renderer
Release v0.1-alpha.3

Inexor Collective

Jul 11, 2023

CONTENTS

1 Documentation 3
1.1 Development . 3
1.2 Source Code . 55
1.3 How to contribute . 55
1.4 Frequently asked questions . 60
1.5 Changelog . 66
1.6 Helpful Links . 68
1.7 Source Code License . 71
1.8 Contact us . 71
1.9 Frequently asked questions . 71

Index 79

i

ii

Inexor Vulkan Renderer, Release v0.1-alpha.3

Inexor is a MIT-licensed open-source project which develops a new 3D octree game engine by combining modern
C++ with Vulkan API.

CONTENTS 1

Inexor Vulkan Renderer, Release v0.1-alpha.3

2 CONTENTS

CHAPTER

ONE

DOCUMENTATION

Quickstart: Building Instructions (Windows/Linux) & Getting started

1.1 Development

1.1.1 Supported platforms

• Vulkan API is completely platform-agnostic, which allows it to run on various operating systems.

• The required drivers for Vulkan are usually part of your graphic card’s drivers.

• Update your graphics drivers as often as possible since new drivers with Vulkan updates are released frequently.

• Driver updates contain new features, bug fixes, and performance improvements.

• Check out Khronos website for more information.

Microsoft Windows

• We support x64 Microsoft Windows 8, 8.1 and 10.

• We have build instructions for Windows.

Linux

• We support every x64 Linux distribution for which Vulkan drivers exist.

• We have specific build instructions for Gentoo, Ubuntu, Debian, and Arch..

• If you have found a way to set it up for other Linux distributions, please open a pull request and let us know!

macOS and iOS

• We do not support macOS or iOS because it would require us to use MoltenVK to get Vulkan running on Mac
OS.

• Additionally, this would require some changes in the engines as not all of Inexor’s dependencies are available on
macOS or iOS.

3

https://www.khronos.org/vulkan/
https://github.com/inexorgame/vulkan-renderer/pulls
https://github.com/KhronosGroup/MoltenVK

Inexor Vulkan Renderer, Release v0.1-alpha.3

Android

• We also do not support Android because this would require some changes in the engines as not all of Inexor’s
dependencies are available on Android.

1.1.2 Getting started

Also see the building instructions (Windows/Linux).

Required Software

Git Git for cloning (downloading) the source code.

Python with pip Required for generating the documentation and the C++ package manager.

CMake The build generator which generates project files for various IDEs.

Vulkan SDK Vulkan SDK contains the libraries and tools which are necessary to work with Vulkan API.

Update your Vulkan SDK as often as possible, because new versions will be released frequently which contains
new features and bug fixes.

Make sure you add the glslangValidator in the Vulkan SDK’s bin folder to your path variable.

Optional Software

GitKraken Git GUI. A Git user interface with many features which is easy to use.

GitHub Desktop An open source Git user interface which is easy to use.

Ninja Build System Improve your build times with ninja.

RenderDoc Powerful open source graphics debugger. Inexor has full RenderDoc integration.

Doxygen Required for generating the documentation.

Notepad++ Free and open source text editor.

Atom.io Free and open source text editor.

Visual Studio Code Free and open source text editor.

Does my graphics card support Vulkan?

• You can look up your graphics card in Sascha Willem’s Vulkan hardware database.

• Every new graphics card which is coming out these days supports Vulkan API.

• Vulkan is also supported on older graphics cards going back to Radeon HD 7000 series and Nvidia Geforce 6
series.

4 Chapter 1. Documentation

https://www.git-scm.com/
https://www.python.org/
https://pypi.org/project/pip/
https://cmake.org/
https://vulkan.lunarg.com/sdk/home
https://www.gitkraken.com/git-client
https://desktop.github.com/
https://ninja-build.org/
https://renderdoc.org/
http://www.doxygen.nl/download.html
https://notepad-plus-plus.org/downloads/
https://atom.io/
https://code.visualstudio.com/
https://vulkan.gpuinfo.org/
https://en.wikipedia.org/wiki/Radeon_HD_7000_series
https://en.wikipedia.org/wiki/GeForce_6_series
https://en.wikipedia.org/wiki/GeForce_6_series

Inexor Vulkan Renderer, Release v0.1-alpha.3

Update your graphics drivers!

• Update your graphics drivers as often as possible.

• New drivers contain new features, bug fixes, and performance improvements.

1.1.3 Building vulkan-renderer

• Windows

• Linux

Also see Getting started.

If you have any trouble please open a ticket or join our Discord server.

This project uses out of source builds using either gcc, clang or Microsoft Visual Studio compiler.

Generating the documentation will create two subfolders in doc which will be ignored by git.

The following CMake targets and options are available:

Table 1: List of CMake build targets.
build target description comment
inexor-vulkan-renderer The main executable.
inexor-vulkan-renderer-tests Tests the renderer using Google Test. There are no tests

available yet.
inexor-vulkan-renderer-
benchmark

Benchmarking of the renderer using Google Benchmark. There are no bench-
marks available yet.

inexor-vulkan-renderer-
documentation

Builds the documentation with Sphinx. Enable target
creation with -DINEXOR_BUILD_DOC=ON.

inexor-vulkan-renderer-
documentation-linkcheck

Use sphinx’s linkcheck feature to search for broken links.

Table 2: List of CMake options.
option description default

value
INEXOR_BUILD_EXAMPLE Builds inexor-renderer-example. ON
INEXOR_BUILD_TESTS Builds inexor-renderer-tests. OFF
INEXOR_BUILD_BENCHMARKS Builds inexor-renderer-benchmarks. OFF
INEXOR_BUILD_DOC Builds the documentation with Sphinx. OFF
INEXOR_BUILD_DOCUMENTATION_USE_VENVGenerate and use a Python virtual environment for the doc-

umentation dependencies.
ON

1.1. Development 5

https://github.com/inexorgame/vulkan-renderer/issues
https://discord.com/invite/acUW8k7
https://gcc.gnu.org/
https://clang.llvm.org/
https://visualstudio.microsoft.com/en/downloads/
https://github.com/google/googletest
https://github.com/google/benchmark
https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/

Inexor Vulkan Renderer, Release v0.1-alpha.3

Windows

Example: Create Visual Studio 2022 project map for Debug mode including docs, tests, and benchmarks:

cmake -G "Visual Studio 17 2022" -A x64 -B./cmake-build-debug-vs/ -DCMAKE_BUILD_
→˓TYPE=Debug -DINEXOR_BUILD_DOC=ON -DINEXOR_BUILD_TESTS=ON -DINEXOR_BUILD_BENCHMARKS=ON .
→˓/

Example: Create Visual Studio 2022 project map for Release mode but without docs, tests, and benchmarks:

cmake -G "Visual Studio 17 2022" -A x64 -B./cmake-build-release-vs/ -DCMAKE_BUILD_
→˓TYPE=Release ./

If you have Ninja build system installed, you can use it like this:

executing from project root assumed
Ninja generator and Debug type
\> cmake -G Ninja -B./cmake-build-debug/ -DCMAKE_BUILD_TYPE=Debug ./
Ninja generator and Release type
\> cmake -G Ninja -B./cmake-build-release/ -DCMAKE_BUILD_TYPE=Release ./
Create Visual Studio Solution
\> cmake -G "Visual Studio 17 2022" -A x64 -B./cmake-build-debug-vs/ -DCMAKE_BUILD_
→˓TYPE=Debug ./
Build all targets
\> cmake --build ./cmake-build-debug/

• Choose any IDE that CMake can generate a project map for. If in doubt use Visual Studio 2022.

• Clone the source code. Free and good tools are GitHub Desktop or GitKraken Git GUI.

• Open CMake and select the root folder which contains CMakeLists.txt (not just src folder!).

• You can choose any location for the build folder.

• Click “Configure” and select your IDE (in doubt Visual Studio 17 2022). Click “Finish”.

• CMake will now set up dependencies automatically for you. This might take a while. If this fails, you really
should open a ticket!

• Click “Generate”. You can now open the Visual Studio project file in your build folder.

• For debugging, please check that the root directory of the repository is set as working directory in Visual Studio.
Usually, CMake should take care of this already.

• You are now ready to start debugging! Our main branch must be stable at all cost.

Linux

Install dependencies and tools:

6 Chapter 1. Documentation

https://ninja-build.org/
https://visualstudio.microsoft.com/
https://desktop.github.com/
https://www.gitkraken.com/git-client

Inexor Vulkan Renderer, Release v0.1-alpha.3

Ubuntu Follow the Install the SDK-instructions on the vulkan-
sdk page.
Install the required packages:

apt install -y \
pkg-config \
libglm-dev \
libxcb-dri3-0 \
libxcb-present0 \
libpciaccess0 \
libpng-dev \
libxcb-keysyms1-dev \
libxcb-dri3-dev \
libx11-dev \
libmirclient-dev \
libwayland-dev \
libxrandr-dev \
libxcb-ewmh-dev

apt install -y \
cmake \
ninja-build \
clang-tidy \
vulkan-sdk \
python3 \
python3-pip

$ pip3 install \
wheel \
setuptools \

Gentoo
emerge \

dev-util/cmake \
dev-util/vulkan-headers \
dev-util/vulkan-tools \
dev-vcs/git \
media-libs/vulkan-layers \
media-libs/vulkan-loader

Install ninja build tool (optional):

emerge dev-util/ninja

Debian Follow the Install the SDK-instructions on the vulkan-
sdk page.
Install the required packages:

apt install -y \
libvulkan-dev \
glslang-dev \
glslang-tools \
vulkan-tools \
vulkan-validationlayers-dev \
spirv-tools \
pkg-config \
libglm-dev \
libxcb-dri3-0 \
libxcb-present0 \
libpciaccess0 \
libpng-dev \
libxcb-keysyms1-dev \
libxcb-dri3-dev \
libx11-dev \
libmirclient-dev \
libwayland-dev \
libxrandr-dev \
libxcb-ewmh-dev

apt install -y \
cmake \
ninja-build \
clang-tidy \
vulkan-sdk \
python3 \
python3-pip

$ pip3 install \
wheel \
setuptools \

Arch Follow the Install the SDK-instructions on the vulkan-
sdk page.
Install the required packages:

pacman -S --noconfirm \
pkg-config \
glslang \
spirv-tools \
glm \
libice \
libpciaccess \
libpng \
libx11 \
libxres \
xkeyboard-config \
libxrandr \
libxcb \
libxaw \
xcb-util \
xtrans \
libxvmc

pacman -S --noconfirm \
cmake \
ninja \
vulkan-headers \
vulkan-tools \
vulkan-validation-layers \
python3 \
python-pip

$ pip3 install \
wheel \
setuptools \

Fedora Install the required packages:

dnf install -y \
git \
cmake \
gcc \
gcc-c++ \
ninja-build \
vulkan \
libvkd3d \
vulkan-loader-devel \
python3-pip \
libglvnd-devel \
libfontenc-devel \
libXaw-devel \
libXcomposite-devel \
libXcursor-devel \
libXdmcp-devel \
libXtst-devel \
libXinerama-devel \
libxkbfile-devel \
libXrandr-devel \
libXres-devel \
libXScrnSaver-devel \
libXvMC-devel \
xorg-x11-xtrans-devel \
xcb-util-wm-devel \
xcb-util-image-devel \
xcb-util-keysyms-devel \
xcb-util-renderutil-devel \
libXdamage-devel \
libXxf86vm-devel \
libXv-devel \
xcb-util-devel \
libuuid-devel \
xkeyboard-config-devel \
glslang-devel

Other Planned. We would love to see a pull request on this file
if you get it running on other distributions.

1.1. Development 7

https://vulkan.lunarg.com/doc/view/latest/linux/getting_started_ubuntu.html#user-content-install-the-sdk
https://vulkan.lunarg.com/doc/view/latest/linux/getting_started_ubuntu.html#user-content-install-the-sdk
https://vulkan.lunarg.com/doc/view/latest/linux/getting_started_ubuntu.html#user-content-install-the-sdk
https://github.com/inexorgame/vulkan-renderer/blob/main/documentation/source/development/building.rst
https://github.com/inexorgame/vulkan-renderer/blob/main/documentation/source/development/building.rst

Inexor Vulkan Renderer, Release v0.1-alpha.3

Clone the repository:

$ git clone https://github.com/inexorgame/vulkan-renderer
$ cd vulkan-renderer

Configure cmake:

Note: Only pass -GNinja if the ninja build tool is installed.

$ cmake . \
-Bbuild \
-DCMAKE_BUILD_TYPE=Debug \
-GNinja

Build and run:

If you have any trouble please open a ticket or join our Discord server.

$ cmake --build build --target inexor-vulkan-renderer-example
$./build/bin/inexor-vulkan-renderer-example

1.1.4 Debugging

Logfiles

Inexor uses spdlog for both console logging and logfiles.

8 Chapter 1. Documentation

https://github.com/inexorgame/vulkan-renderer/issues
https://discord.com/invite/acUW8k7
https://github.com/gabime/spdlog

Inexor Vulkan Renderer, Release v0.1-alpha.3

The log output which can be seen in the console will also be written to vulkan-renderer.log in the root directory.

You can open and read this logfile with a text editor of your choice.

We are using the following log entry format %Y-%m-%d %T.%f %^%l%$ %5t [%-10n] %v.

• %Y is the year.

• %m is the month (01 to 12).

• %d is the day of month (01 to 31).

• %T is ISO 8601 time format (HH:MM:SS).

• %f is the microsecond part of the current second.

• %^%l%$ is the color-coded log level.

• %5t is the thread id formatted to a string of length 5.

• [%-10n] is the name of the logger, limited to 10 characters.

• %v is the log message.

For more information, check out spdlog’s documentation about custom formatting.

Use the following rules for logging:

• Don’t use std::cout or printf or similar. Just use spdlog instead.

• Place as many log messages to your code as possible.

• End log messages with a . to show that the message is finished.

• Use all log levels as you need it: spdlog::trace, spdlog::info, spdlog::debug, spdlog::error,
spdlog::critical.

• You can print variables with spdlog (see this reference) because it is based on fmt library.

• Use direct API calls like spdlog::debug("Example text here"); instead of creating your own logger name
for now. We will come up with a strategy for logger hierarchy later.

Command Line Arguments

You can start vulkan-renderer with the following command line arguments:

--gpu <index>

Specifies which GPU to use by array index, starting from 0.

Note: The engine checks if this index is valid. If the index is invalid, automatic GPU selection rules apply.

--no-separate-data-queue

Disables the use of the special data transfer queue (forces use of the graphics queue).

Warning: Enabling this option could decrease the overall performance. Don’t enable this option unless you have
to.

--no-validation

Disables Vulkan validation layers.

1.1. Development 9

https://en.wikipedia.org/wiki/ISO_8601
https://github.com/gabime/spdlog/wiki
https://github.com/gabime/spdlog/wiki/3.-Custom-formatting
https://fmt.dev/latest/syntax.html
https://github.com/fmtlib/fmt
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#devsandqueues-queues
https://github.com/KhronosGroup/Vulkan-ValidationLayers

Inexor Vulkan Renderer, Release v0.1-alpha.3

Warning: You should never disable validation layers because they offer extensive error checks for debugging.

--no-vk-debug-markers

Disables Vulkan debug markers (even if --renderdoc is specified).

--renderdoc

Enables the RenderDoc debug layer.

--vsync

Warning: Vsync is currently not implemented. The command line argument will be ignored.

Enables vertical synchronization (limits FPS to monitor refresh rate).

RenderDoc

• RenderDoc is a free and open source graphics debugger for Vulkan API (and other APIs) developed by Baldur
Karlsson.

• It is a very powerful graphics debugging and visualization tool which makes debugging Vulkan application as
easy as possible.

• Inexor has full RenderDoc integration. This includes internal resource naming using Vulkan debug markers.

• The following tutorial shows how to debug Inexor using RenderDoc.

• You can read up more details in RenderDoc’s documentation.

RenderDoc Tutorial for Windows

Step 1: Open Inexor in Visual Studio and add a breakpoint before Vulkan initialization

• The best spot would be right after main():

10 Chapter 1. Documentation

https://www.saschawillems.de/blog/2016/05/28/tutorial-on-using-vulkans-vk_ext_debug_marker-with-renderdoc/
https://renderdoc.org/
https://en.wikipedia.org/wiki/Analog_television#Vertical_synchronization
https://renderdoc.org/
https://github.com/baldurk
https://github.com/baldurk
https://www.saschawillems.de/blog/2016/05/28/tutorial-on-using-vulkans-vk_ext_debug_marker-with-renderdoc/
https://renderdoc.org/docs/getting_started/quick_start.html

Inexor Vulkan Renderer, Release v0.1-alpha.3

Step 2: Open RenderDoc.

1.1. Development 11

Inexor Vulkan Renderer, Release v0.1-alpha.3

Step 3: Start debugging inexor-vulkan-renderer and halt at the breakpoint

Step 4: “Inject into process” inexor-vulkan-renderer.exe using RenderDoc

12 Chapter 1. Documentation

Inexor Vulkan Renderer, Release v0.1-alpha.3

Step 5: Search for “inexor-vulkan-renderer.exe” and click “inject”

• You will see a warning Windows Firewall the first time you do this.

• This is because RenderDoc is reading memory from inexor-vulkan-renderer.

• Accept the Windows Firewall warning to allow RenderDoc to read memory.

Step 6: Continue debugging in Visual Studio

• RenderDoc should now look like this.

1.1. Development 13

Inexor Vulkan Renderer, Release v0.1-alpha.3

• Press F5 to continue program execution from the breakpoint.

• RenderDoc is now connected to inexor-vulkan-renderer:

• You can see RenderDoc’s overlay in inexor-vulkan-renderer.exe:

14 Chapter 1. Documentation

Inexor Vulkan Renderer, Release v0.1-alpha.3

Step 7: Debug inexor-vulkan-renderer.exe as usual and press F12 to take RenderDoc snapshots

• You can take multiple snapshots with either PRINT or F12 key.

1.1. Development 15

Inexor Vulkan Renderer, Release v0.1-alpha.3

• You can see the snapshots in RenderDoc right after you took them:

16 Chapter 1. Documentation

Inexor Vulkan Renderer, Release v0.1-alpha.3

Step 8: Open a snapshot to analyze the rendering of this frame

• Double click on a snapshot to open it:

• Have fun inspecting!

1.1. Development 17

Inexor Vulkan Renderer, Release v0.1-alpha.3

VMA dumps

• For memory management, Inexor uses AMD’s Vulkan Memory Allocator library (VMA).

• VMA can export an overview of the current GPU memory allocations into a JSON file which can be converted
into an image using VMA’s VmaDumpVis.

• This way we can see which memory pools exist, which memory blocks are allocated, and what they are used for.

• The example image provided here might look very simple, but with increasing complexity of our engine this will
turn out very helpful.

This is a very simple example of such an image generated with VmaDumpVis:

Example: march 2020 texture memory corruption bug

• In march 2020, a bug in Inexor’s early graphics memory management caused textures to corrupt on window
resize.

• VmaDumpVis helped to resolve the issue by proving the memory consumption increased after each resize, which
means the texture memory was simply not freed when the swapchain was recreated.

• This is an example of how VMA and VmaDumpVis make debugging graphics memory easier.

18 Chapter 1. Documentation

https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator/tree/master/tools/GpuMemDumpVis
https://community.khronos.org/t/texture-corruption-when-window-is-resized/105456

Inexor Vulkan Renderer, Release v0.1-alpha.3

1.1.5 Engine design

Folder structure

• Use lowercase filenames

• Don’t use spaces, use underscores.

Source code

connector/ «project root»
.clang-format «Clang Format configuration»
.clang-tidy «Clang Tidy configuration»
.git-blame-ignore-revs «git ignore revisions»
.gitignore «git ignore»
.readthedocs.yml «Read The Docs configuration»
CHANGELOG.rst
CMakeLists.txt

(continues on next page)

1.1. Development 19

Inexor Vulkan Renderer, Release v0.1-alpha.3

(continued from previous page)

CODE_OF_CONDUCT.md
CONTRIBUTING.md
LICENSE.md
README.rst
.github/ «GitHub templates and action configurations»
assets/

models/
textures/ «textures»

benchmarks/
cmake/ «CMake helpers»
configuration/
documentation/

CMakeLists.txt «CMake file for the documentation»
cmake/ «documentation cmake helpers»
source/ «documentation source code»

example/ «example application»
include/ «header files»
shaders/
src/ «source code»
tests/
third_party/ «third party dependencies»
vma-dumps/

Application

vulkan-renderer/ «application root»
inexor-vulkan-renderer.exe «executable»
...
assets/
shaders/
...

Dependency management

• In general we try to keep the number of dependencies at a minimum.

• Dependencies are downloaded directly by CMake.

Criteria for library selection

If we really need a new library, it should be selected based on the following considerations:

• Are you sure we need this library? Can’t we solve the problem with C++ standard library or some other library
we are already using?

• The library must have an open source license which is accepted by us (see Licenses).

• It must be in active development.

• It must have a good documentation.

• A sufficient number of participants must have contributed so we can be sure it is reviewed.

20 Chapter 1. Documentation

Inexor Vulkan Renderer, Release v0.1-alpha.3

Coding style

The easiest way to get the right format is to use the provided clang-format file in the root directory.

Other styles which cannot be applied automatically are listed below:

• Use #pragma once as include guards

• Own headers are included with quotes

• Includes are ordered as follows

– Own headers

– empty line

– Third Party Libraries

– empty line

– System Libraries

• Use C++17 namespace style namespace inexor::vulkan-renderer

• No using <namespace>

• For default member initialization use brace instead of equal initialization

• Prefer American English over British English

• Use spaces to indent

• Use Linux line ends (ln) in your commits

• Use /// for multiline documentation instead of /**/

Naming convention

Open the .clang-tidy file and search for readability-identifier-naming to get the naming convention used
by this project.

Error handling

• Use exceptions for error handling, as proposed by the C++ core guidelines.

• More information about why to use exceptions can be found here.

Get methods

• Name: Don’t use prefix get_. Give the get method the same name as the resource it returns.

• For complex types (std::vector, std::string), return a const reference.

• Don’t const the return type for simple types (int, float), because this prevents move semantics to be applied.

• For simple types (int, float), just copy the return value.

• Mark get methods as [[nodiscard]] in the header file only.

• Mark get methods as const, so they don’t change members.

• Do not add documentation for get methods, since it is self-explanatory.

1.1. Development 21

https://clang.llvm.org/docs/ClangFormat.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-errors
https://isocpp.org/wiki/faq/exceptions

Inexor Vulkan Renderer, Release v0.1-alpha.3

• Keep get methods directly in the header file.

• Do not add inline since get methods in header files are always inlined.

• The get method should not run any other code, like checking if the value is actually valid. Since we are using
RAII, the value to return must be in a valid state anyways.

• Use operator overloading sparingly. Prefer get methods instead.

Examples:

[[nodiscard]] const glm::vec3& position() const {
return m_position;

}

[[nodiscard]] float aspect_ratio() const {
return m_aspect_ratio;

}

Removed clang-tidy checks

bugprone-narrowing-conversions Same as cppcoreguidelines-narrowing-conversions

cppcoreguidelines-avoid-magic-numbers Alias of readability-magic-numbers

cppcoreguidelines-c-copy-assignment-signature Alias of misc-unconventional-assign-operator

cppcoreguidelines-non-private-member-variables-in-classes Alias of misc-non-private-member-variables-in-classes

cppcoreguidelines-pro-bounds-array-to-pointer-decay Not suitable for this project.

google-readability-todo We do not care about any TODO assignments or related issues.

hicpp-explicit-conversions Alias of google-explicit-constructor

hicpp-move-const-arg Alias of performance-move-const-arg

hicpp-no-array-decay Alias of cppcoreguidelines-pro-bounds-array-to-pointer-decay

hicpp-uppercase-literal-suffix Alias of readability-uppercase-literal-suffix

llvm-header-guard #pragma once is used.

modernize-use-trailing-return-type Trailing return types are not used.

readability-magic-numbers Too many places where it would be useless to introduce a constexpr value.

readability-uppercase-literal-suffix Just a style preference.

Code design

Literature

The following books inspired Inexor’s code design:

• Bjarne Stroustrup: The C++ Programming Language (4th Edition)

• Scott Meyers: Effective Modern C++

• Scott Meyers: Effective C++: 55 Specific Ways to Improve Your Programs and Designs, Third Edition

• Scott Meyers: Effective STL

22 Chapter 1. Documentation

https://www.stroustrup.com/4th.html
https://www.oreilly.com/library/view/effective-modern-c/9781491908419/
https://www.oreilly.com/library/view/effective-c-55/0321334876/
https://www.oreilly.com/library/view/effective-stl/9780321545183/

Inexor Vulkan Renderer, Release v0.1-alpha.3

• Nicolai M. Josuttis: C++ Move Semantics - The Complete Guide

• Nicolai M. Josuttis: C++ Templates - The Complete Guide, 2nd Edition

• Bartłomiej Filipek C++ Lambda Story

• Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns: Elements of Reusable Object-
Oriented Software

• Robert C. Martin: Clean Code: A Handbook of Agile Software Craftsmanship

• Robert C. Martin: The Clean Coder: A Code of Conduct for Professional Programmers

• Robert C. Martin: Clean Architecture: A Craftsman’s Guide to Software Structure and Design, First Edition

• Fedor G. Pikus: Hands-On Design Patterns with C++

• Rian Quinn: Advanced C++ Programming Cookbook

General considerations

• Organize the code in components.

• Split declarations and definitions, if possible.

• Make appropriate use of the standard library.

• Avoid data redundancy in the engine. Do not keep memory copied unnecessarily.

• Do not duplicate code. Find an appropriate abstraction which accounts for the scenario.

• Try to keep dependencies between components at minimum because single components (e.g. classes) should be
as recyclable as possible.

• Use spdlog instead of printf or std::cout for console output.

• Use assert to validate parameters or necessary resources during development (debug mode).

• Document the code using doxygen comments. Code without documentation is almost useless.

• Make sure the code is platform-independent. For now, we will support Windows and Linux but not Mac OS.

• Use Vulkan memory allocator library for Vulkan-specific memory allocations like buffers.

• Do not allocate memory manually. Use modern ++ features like smart pointers or STL containers instead.

• Don’t use global variables.

• Don’t use the singleton pattern as it makes thread safety and refactoring difficult.

• Don’t use call-by-value for returning values from a function call.

• Don’t use macros for code generation or as a replacement for enumerations.

1.1. Development 23

https://leanpub.com/cppmove
http://www.tmplbook.com/
https://leanpub.com/cpplambda
https://www.oreilly.com/library/view/design-patterns-elements/0201633612/
https://www.oreilly.com/library/view/design-patterns-elements/0201633612/
https://www.oreilly.com/library/view/clean-code-a/9780136083238/
https://www.oreilly.com/library/view/the-clean-coder/9780132542913/
https://www.oreilly.com/library/view/clean-architecture-a/9780134494272/
https://www.packtpub.com/product/hands-on-design-patterns-with-c/9781788832564
https://subscription.packtpub.com/book/programming/9781838559915
https://github.com/gabime/spdlog
http://doxygen.nl/
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator
https://en.cppreference.com/book/intro/smart_pointers
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#i22-avoid-complex-initialization-of-global-objects
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-singleton

Inexor Vulkan Renderer, Release v0.1-alpha.3

C++ core guidelines

• The C++ code guidelines are a set of rules to use for modern C++ projects created by the C++ community.

• In the following section, we will list up the entries which are of considerable interest for the Inexor project.

• There will be some gaps in the number as we skipped some of the less importer ones.

• Also the code guidelines have gaps by default (blank space for new rules).

Philosophy

• P.1: Express ideas directly in code

• P.3: Express intent

• P.4: Ideally, a program should be statically type safe

• P.5: Prefer compile-time checking to run-time checking

• P.8: Don’t leak any resources

• P.9: Don’t waste time or space

• P.10: Prefer immutable data to mutable data

• P.11: Encapsulate messy constructs, rather than spreading through the code

Interfaces

• I.1: Make interfaces explicit

• I.4: Make interfaces precisely and strongly typed

• I.5: State preconditions (if any)

• I.7: State postconditions

• I.10: Use exceptions to signal a failure to perform a required task

• I.11: Never transfer ownership by a raw pointer (T*) or reference (T&)

• I.13: Do not pass an array as a single pointer

• I.23: Keep the number of function arguments low

• I.24: Avoid adjacent parameters of the same type when changing the argument order would change meaning

Functions and class methods

• F.1: “Package” meaningful operations as carefully named functions

• F.2: A function should perform a single logical operation

• F.4: If a function may have to be evaluated at compile time, declare it constexpr

• F.7: For general use, take T* or T& arguments rather than smart pointers

• F.15: Prefer simple and conventional ways of passing information

• F.16: For “in” parameters, pass cheaply-copied types by value and others by reference to const

• F.18: For “will-move-from” parameters, pass by X&& and std::move the parameter

24 Chapter 1. Documentation

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-direct
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-what
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-typesafe
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#p5-prefer-compile-time-checking-to-run-time-checking
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#p8-dont-leak-any-resources
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-waste
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-mutable
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-library
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-explicit
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-typed
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-pre
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-post
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-except
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-raw
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-array
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-nargs
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-unrelated
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-package
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-logical
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-constexpr
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-smart
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-conventional
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-in
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-consume

Inexor Vulkan Renderer, Release v0.1-alpha.3

• F.20: For “out” output values, prefer return values to output parameters

• F.21: To return multiple “out” values, prefer returning a struct or tuple

• F.26: Use a unique_ptr<T> to transfer ownership where a pointer is needed

• F.27: Use a shared_ptr<T> to share ownership

• F.43: Never (directly or indirectly) return a pointer or a reference to a local object

• F.45: Don’t return a T&&

• F.51: Where there is a choice, prefer default arguments over overloading

• F.55: Don’t use va_arg arguments

Classes

• C.2: Use class if the class has an invariant; use struct if the data members can vary independently

• C.3: Represent the distinction between an interface and an implementation using a class

• C.4: Make a function a member only if it needs direct access to the representation of a class

• C.7: Don’t define a class or enum and declare a variable of its type in the same statement

• C.8: Use class rather than struct if any member is non-public

• C.9: Minimize exposure of members

Enumerations

• Enum.1: Prefer enumerations over macros

• Enum.2: Use enumerations to represent sets of related named constants

• Enum.3: Prefer class enums over “plain” enums

• Enum.6: Avoid unnamed enumerations

• Enum.7: Specify the underlying type of an enumeration only when necessary

Resource management

• R.1: Manage resources automatically using resource handles and RAII (Resource Acquisition Is Initialization)

• R.2: In interfaces, use raw pointers to denote individual objects (only)

• R.3: A raw pointer (a T*) is non-owning

• R.4: A raw reference (a T&) is non-owning

• R.5: Prefer scoped objects, don’t heap-allocate unnecessarily

• R.10: Avoid malloc() and free()

• R.11: Avoid calling new and delete explicitly

• R.12: Immediately give the result of an explicit resource allocation to a manager object

• R.13: Perform at most one explicit resource allocation in a single expression statement

1.1. Development 25

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-out
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-out-multi
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-unique_ptr
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-shared_ptr
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-dangle
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-return-ref-ref
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-default-args
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#F-varargs
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-struct
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-interface
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-member
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-standalone
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-class
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-private
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-macro
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-set
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-class
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-unnamed
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-underlying
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-raii
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-use-ptr
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-ptr
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-ref
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-scoped
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-mallocfree
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-newdelete
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-immediate-alloc
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-single-alloc

Inexor Vulkan Renderer, Release v0.1-alpha.3

Classes

• C.30: Define a destructor if a class needs an explicit action at object destruction

• C.31: All resources acquired by a class must be released by the class’s destructor

• C.35: A base class destructor should be either public and virtual, or protected and non-virtual

• C.36: A destructor must not fail

• C.40: Define a constructor if a class has an invariant

• C.41: A constructor should create a fully initialized object

• C.42: If a constructor cannot construct a valid object, throw an exception

• C.43: Ensure that a copyable (value type) class has a default constructor

• C.44: Prefer default constructors to be simple and non-throwing

• C.46: By default, declare single-argument constructors explicit

• C.47: Define and initialize member variables in the order of member declaration

• C.49: Prefer initialization to assignment in constructors

• C.62: Make copy assignment safe for self-assignment

• C.64: A move operation should move and leave its source in a valid state

• C.65: Make move assignment safe for self-assignment

• C.80: Use =default if you have to be explicit about using the default semantics

• C.81: Use =delete when you want to disable default behavior (without wanting an alternative)

• C.82: Don’t call virtual functions in constructors and destructors

• C.90: Rely on constructors and assignment operators, not memset and memcpy

• C.129: When designing a class hierarchy, distinguish between implementation inheritance and interface inheri-
tance

• C.131: Avoid trivial getters and setters

• C.132: Don’t make a function virtual without reason

• C.133: Avoid protected data

Follow rule of 0 and rule of 5

• C.20 If you can avoid defining default operations, do

• C.21: If you define or =delete any copy, move, or destructor function, define or =delete them all

26 Chapter 1. Documentation

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c30-define-a-destructor-if-a-class-needs-an-explicit-action-at-object-destruction
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c31-all-resources-acquired-by-a-class-must-be-released-by-the-classs-destructor
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c35-a-base-class-destructor-should-be-either-public-and-virtual-or-protected-and-non-virtual
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-fail
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c40-define-a-constructor-if-a-class-has-an-invariant
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c41-a-constructor-should-create-a-fully-initialized-object
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c42-if-a-constructor-cannot-construct-a-valid-object-throw-an-exception
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c43-ensure-that-a-copyable-value-type-class-has-a-default-constructor
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c44-prefer-default-constructors-to-be-simple-and-non-throwing
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c46-by-default-declare-single-argument-constructors-explicit
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c47-define-and-initialize-member-variables-in-the-order-of-member-declaration
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c49-prefer-initialization-to-assignment-in-constructors
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c62-make-copy-assignment-safe-for-self-assignment
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c64-a-move-operation-should-move-and-leave-its-source-in-a-valid-state
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c65-make-move-assignment-safe-for-self-assignment
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c80-use-default-if-you-have-to-be-explicit-about-using-the-default-semantics
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c81-use-delete-when-you-want-to-disable-default-behavior-without-wanting-an-alternative
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c82-dont-call-virtual-functions-in-constructors-and-destructors
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c90-rely-on-constructors-and-assignment-operators-not-memset-and-memcpy
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c129-when-designing-a-class-hierarchy-distinguish-between-implementation-inheritance-and-interface-inheritance
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c129-when-designing-a-class-hierarchy-distinguish-between-implementation-inheritance-and-interface-inheritance
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c131-avoid-trivial-getters-and-setters
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c132-dont-make-a-function-virtual-without-reason
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c133-avoid-protected-data
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-zero
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c21-if-you-define-or-delete-any-copy-move-or-destructor-function-define-or-delete-them-all

Inexor Vulkan Renderer, Release v0.1-alpha.3

Performance

• Per.1: Don’t optimize without reason

• Per.2: Don’t optimize prematurely

• Per.3: Don’t optimize something that’s not performance critical

• Per.4: Don’t assume that complicated code is necessarily faster than simple code

• Per.5: Don’t assume that low-level code is necessarily faster than high-level code

• Per.6: Don’t make claims about performance without measurements

• Per.11: Move computation from run time to compile time

Design patterns

• Check out Refactoring Guru to learn more about software design patterns.

• Don’t use the singleton pattern as it makes thread safety and refactoring difficult.

• Use the builder pattern for composition of complicated data structures.

• An example of a builder pattern would be the descriptor builder.

Regressions

• If something used to work but it’s broken after a certain commit, it’s not just some random bug.

• It’s probably an issue which was introduced by the code change which was submitted.

• It’s important for us to keep working features in a stable state.

• You can use git bisect for tracing of the commit which introduced the bug.

1.1.6 Continuous integration

• The main branch and the build system must stay stable at all time.

• You can see the current status of the main branch in the build batch:

• Currently we are using GitHub Actions for building with gcc, clang and Microsoft Visual Studio on every push
or pull request.

• This Continuous Integration (CI) allows for automatic building and testing of our software.

• We also have a webhook which directly dispatches the build status into our Discord. This allows us to spot and
fix broken code easily.

• Our CI setup is inspired by a blog entry by Adam Sawicki.

1.1. Development 27

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-reason
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per2-dont-optimize-prematurely
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per3-dont-optimize-something-thats-not-performance-critical
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per4-dont-assume-that-complicated-code-is-necessarily-faster-than-simple-code
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per5-dont-assume-that-low-level-code-is-necessarily-faster-than-high-level-code
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per6-dont-make-claims-about-performance-without-measurements
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per11-move-computation-from-run-time-to-compile-time
https://refactoring.guru/design-patterns
https://en.wikipedia.org/wiki/Software_design_pattern
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-singleton
https://refactoring.guru/design-patterns/builder
https://github.com/inexorgame/vulkan-renderer/blob/main/src/vulkan-renderer/wrapper/descriptor_builder.cpp
https://github.com/inexorgame/vulkan-renderer/actions?query=workflow%3A%22Build%22
https://github.com/features/actions
https://gcc.gnu.org/
https://clang.llvm.org/
https://visualstudio.microsoft.com/en/downloads/
https://en.wikipedia.org/wiki/Continuous_integration
https://gist.github.com/jagrosh/5b1761213e33fc5b54ec7f6379034a22
https://discord.com/invite/acUW8k7
https://github.com/inexorgame/vulkan-renderer/blob/main/.github/workflows/build.yml
https://www.asawicki.info/news_1655_how_to_use_vulkan_sdk_with_appveyor_and_travis_ci
https://github.com/adam-sawicki-a

Inexor Vulkan Renderer, Release v0.1-alpha.3

1.1.7 Clang format

• In order to have one unified code formatting style, we use clang-format.

• Clang-format automatically formats source code according to a set of rules which a project needs to agree on.

• Our current style can be found in the clang-format file file in the root folder of the repository.

• We recommend to install plugins which auto format the code when the file is being saved.

• Instructions for how to enable clang-format in Microsoft Visual Studio can be found here.

• Other editors like Visual Studio Code, Atom.io, Notepad++ and Sublime Text support this as well.

• Part of our Continuous Integration (CI) are automated clang-format checks using GitHub actions.

• Our setup of clang-format with GitHub actions can be here.

• A pull request will only be accepted if it follows those code formatting rules.

Example of clang-format checking a pull request along with gcc/clang/msvc build:

28 Chapter 1. Documentation

https://clang.llvm.org/docs/ClangFormat.html
https://github.com/inexorgame/vulkan-renderer/blob/main/.clang-format
https://github.com/inexorgame/vulkan-renderer
https://visualstudio.microsoft.com/
https://devblogs.microsoft.com/cppblog/clangformat-support-in-visual-studio-2017-15-7-preview-1/
https://code.visualstudio.com/
https://atom.io/
https://notepad-plus-plus.org/downloads/
https://www.sublimetext.com/
https://en.wikipedia.org/wiki/Continuous_integration
https://github.com/features/actions
https://github.com/inexorgame/vulkan-renderer/blob/main/.github/workflows/code_style.yml

Inexor Vulkan Renderer, Release v0.1-alpha.3

1.1.8 Test automation

• Inexor will use Google Test for automated software testing in the future.

• Running automatic tests using GitHub actions is not possible for Vulkan features since this requires a graphics
card to be present.

• There are some services which offer test automation for rendering, but they are not free.

• The tests would have to run on the developer’s machine locally.

1.1.9 Benchmarking

• Inexor will use Google Benchmark in the future.

• Benchmarks can also not run in GitHub actions since testing Vulkan features would require a graphics card.

• The tests will run locally on the developer’s machine along with the tests.

1.1.10 Static code analysis

We analyze our source code regularly using static code analysis.

The following tools are used:

• Clang-tidy.

• Microsoft Visual Studio code analysis.

• Valgrind, Callgrind and Cachegrind.

1.1.11 Reference

GPU selection mechanism

• In Vulkan API, the word physical device is a more general word for all types of graphics cards, integrated gpus
and more

• If multiple physical devices are available on the system, Inexor engine is able to pick the most suitable one
automatically

• The user can specify a preferred graphics card index with the command line argument --gpu <index> (starting
with index 0!)

• If a preferred index is specified, the engine will verify if the index is valid and pick the physical device if it is
suitable

• If the physical device specified by the user is not suitable because of technical reasons, automatic selection rules
apply

• The engine calculates a score for every available physical device based on the device type and total video memory
size

• If no physical devices are available or no suitable physical device could be chosen, an exception is thrown

1.1. Development 29

https://github.com/google/googletest
https://en.wikipedia.org/wiki/Test_automation
https://github.com/google/benchmark
https://en.wikipedia.org/wiki/Static_program_analysis
https://clang.llvm.org/extra/clang-tidy/
https://docs.microsoft.com/en-us/visualstudio/code-quality/?view=vs-2022
https://valgrind.org/
https://valgrind.org/docs/manual/cl-manual.html
https://valgrind.org/docs/manual/cg-manual.html

Inexor Vulkan Renderer, Release v0.1-alpha.3

Binary Format Specification

Comments start with //, everything after for the rest of the line is ignored.

Spaces can be used to improve the readability, but are not required. Spaces are preferred over tabs.

Variable or data type names are case sensitive.

Endianness

Available values are little and big. When defining the reserved data type name ENDIANNESS, all other data types
who do not define an own endianness are interpreted as this.

| ENDIANNESS : little // default value for all non defined

Data Types

Every data type name, can also be used as an variable name, they don’t interfere. Data types can be defined the following
way | <name> : <bit size> - <endianness> // description, whereas - <endianness> is optional, if a
default endianness is given. The bit size can be set by a variable too.

| Bit : 1 - little // A bit, 0 or 1.
| uByte : 4 - little // An unsigned byte.
| uInt : 8 - little // unsigned integer

// or

| ENDIANNESS : little
| Bit : 1 // A bit, 0 or 1.
| uInt : 8 // unsigned integer

uInt : mySize = 0
| myType : mySize // My special type.

Struct Types

If you have compressed data, it can be easily described as a struct struct <name> {. Members can be access with a
dot.

struct SpecSummary {
> uByte (1) : size // Size
> uByte (1) : spec_a // Specification A
> uByte (1) : spec_b // Specification B

}

> SpecSummary (1) : spec // specification summary

if (spec.size > 0) {
read_spec()

}

30 Chapter 1. Documentation

Inexor Vulkan Renderer, Release v0.1-alpha.3

Bit Reading & Variables

Each bit interpretation starts with >, whereas variable name and the reinterpreted type are optional. Variables are only
valid in their declared scope. <counter> is a value, how often the data type is read, it will create a list with its content.
If a reinterpreted type is given, it will be reinterpreted as if the amount of single bits was read by the reinterpretation
type (> Bit (3) : uByte reinterprets 3 bits into one uByte). If the reinterpreted type is bigger, it will be filled with
0 regarding to the endianness, to not change the value (e.g. little endianness will fill from the left side). Same with
cutting it off.

> <data type> (<counter>) <reinterpreted type> : <variable name> // <description>
^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^ optional

// examples

> uByte (7) // string identifier: "myimage"
> uInt (1) : image_size // image size in bytes
> Bit (3) uByte : red_color // red color

> Bit (3) uByte // possible but does not make any sense, as the reinterpreted type will␣
→˓not be used.

uInt : other_size = image_size // declare new variable other_size with content of image_
→˓size
uInt : id = 0 // declare a new variable of type uInt and content 0

Conditions

if, else if, else. Available comparisons are ==, !=, <, >, <=, >=. Which can be combined with && (and) and ||
(or). Brackets are not required around the condition, but can improve the readability. You cannot compare a list to a
number. You have to reinterpret it beforehand or cast it.

> Bit (2) uByte : roll_over // roll over simulation type
uInt : roll_over_int = roll_over
if (roll_over_int == 0) { // roll over specification 0

> uInt (1) // roll over specifications
} else if (uInt(roll_over) == 1) { // roll over specification 1

> uInt (1) // roll over specifications
> uInt (1) // more roll over specifications

} else { // default roll over specification
> uByte (1) // weight in kg
> uInt (1) // roll over specifications

}

A short version for else if chaining is switch, case. default will be used if no other case matches. There is no
default fallthrough, to get this behaviour use fallthrough. A break inside a switch case will break out of it.

> Bit (2) uByte : roll_over // roll over simulation type
uInt : roll_over_int = roll_over
switch (roll_over_int) {
case 0: // roll over specification 0

> uInt (1) // roll over specifications
case 1: // roll over specification 1

(continues on next page)

1.1. Development 31

Inexor Vulkan Renderer, Release v0.1-alpha.3

(continued from previous page)

> uInt (1) // roll over specifications
> uInt (1) // more roll over specifications

default: // default roll over specification
> uByte (1) // weight in kg
> uInt (1) // roll over specifications

}

Loops

There are three types of loops: for, range-based for and a while loop. Brackets are not required around the condition,
but can improve the readability. You can break out of a loop with the break keyword.

for (id; id <= 3; id++) { // 0..2
// ...

}

for (0..2 : id) { // including both borders 0 and 2
// ...

}

uInt : id = 0
while (id <= 3) {

// ...
id = id + 1

}

uInt : id = 0
while (true) {

if (id == 3) {
break

}
// ...
id = id + 1

}

Functions

Functions can be used to reuse a specific block again. def <name>(<parameter>) <return values> {}

def get_cube(uInt : param) uInt, uByte {
> uInt (1) : first
> uByte (1) : second
return first, second

} // get_cube

> uInt (1) : rec_first
> uByte (1) : rec_second
rec_first, rec_second = get_cube()

32 Chapter 1. Documentation

Inexor Vulkan Renderer, Release v0.1-alpha.3

Keyboard and mouse input

Inexor engine uses glfw3 for window management and for keyboard and mouse input. Inexor does not use manual
polling of keyboard and mouse input data, but uses callbacks instead. This way, we ensure we are not missing a key
event. For more information check out glfw’s input guide. Inexor uses a wrapper class for keyboard and mouse input
data, called KeyboardMouseInputData. This class offers an easy-to-use interface for setting and getting keyboard
and mouse input. KeyboardMouseInputData is thread safe since pull request 401.

Note: Inexor redirects keyboard and mouse input events to class methods which handle it. Because glfw is a C-style
API, it is not possible to use class methods directly as callbacks for keyboard and mouse input data. To fix this, we set
the glfw window user pointer to the class instance which contains the input callback methods. Then, we use a lambda to
set up the class method as callback. All setups are done in Application::setup_window_and_input_callbacks.
For more information about this workaround, check out this Stackoverflow issue.

Note: It’s not possible handle glfw input data in a thread which is separate from the thread which created the corre-
sponding window. For more information, check out this glfw forum post.

Keyboard input

• We store the pressed keys as a std::array<bool, GLFW_KEY_LAST> member in KeyboardMouseInputData

• The maximum number of keys is defined by GLFW_KEY_LAST

• If a key is pressed or released, we notify KeyboardMouseInputData by calling method press_key and
release_key, respectively

• Check if a key is currently pressed by calling method is_key_pressed

• Check if a key was pressed once by calling method was_key_pressed_once

Mouse input

• We store the pressed mouse buttons as a std::array<bool, GLFW_MOUSE_BUTTON_LAST> member in
KeyboardMouseInputData

• The maximum number of mouse buttons is defined by GLFW_MOUSE_BUTTON_LAST.

• If a mouse button is pressed or released, we notify KeyboardMouseInputData by calling method
press_mouse_button and release_mouse_button, respectively

• To update the current cursor position, we call set_cursor_pos

• To get the current cursor position, we call get_cursor_pos

• The change in cursor position can be queried with calculate_cursor_position_delta

• Check if a mouse button is pressed by calling method is_mouse_button_pressed

• Check if a mouse button was pressed once by calling method was_mouse_button_pressed_once

1.1. Development 33

https://www.glfw.org/
https://www.glfw.org/docs/3.3/group__input.html#ga67ddd1b7dcbbaff03e4a76c0ea67103a
https://www.glfw.org/docs/3.3/group__input.html#ga67ddd1b7dcbbaff03e4a76c0ea67103a
https://www.glfw.org/docs/3.3/input_guide.html#input_keyboard
https://www.glfw.org/docs/3.3/input_guide.html
https://github.com/inexorgame/vulkan-renderer/pull/401
https://stackoverflow.com/questions/7676971/pointing-to-a-function-that-is-a-class-member-glfw-setkeycallback
https://discourse.glfw.org/t/multithreading-glfw/573

Inexor Vulkan Renderer, Release v0.1-alpha.3

Joysticks

Inexor does not support joysticks yet.

Octree File Format

The Inexor octree format describes the structure of the maps (and even models) created in Inexor.

Octree

The orange are coordinates of the corner, the pink of the block.

The position of a block is always the (0, 0, 0) corner coordinates.

Corner and Block Order

If blocks or corners are ordered, they use this order.

Table 3: Corner and Block Order
ID Coordinate
0 (0, 0, 0)
1 (0, 0, 1)
2 (0, 1, 0)
3 (0, 1, 1)
4 (1, 0, 0)
5 (1, 0, 1)
6 (1, 1, 0)
7 (1, 1, 1)

Order of Faces

The following order of faces is used:

Table 4: Order of Face
ID Name Normal vector
0 left (-1, 0, 0)
1 right (1, 0, 0)
2 front (0, 1, 0)
3 back (0, -1, 0)
4 top (0, 0, 1)
5 bottom (0, 0, -1)

Order of Indices on Face

The following corner indices are associated to the faces:

34 Chapter 1. Documentation

https://www.glfw.org/docs/3.3/input_guide.html#joystick

Inexor Vulkan Renderer, Release v0.1-alpha.3

Table 5: Order of Indices on Face
ID Indices
0 0, 1, 2, 3
1 4, 5, 6, 7
2 0, 1, 4, 5
3 2, 3, 6, 7
4 1, 3, 5, 7
5 0, 2, 4, 6

Edge Order

• All edges are going into the positive direction of the axis.

• The beginning of the edge is always the smaller corner id.

• If you look at a face, the edges are always numbered with an offset of 3.

• The edges are ordered counter-clockwise starting from the axis.

• A negative ID indicates the reverse direction (-axis).

Table 6: Edge Order
ID Corner ID Tuple
0 (0, 4)
1 (0, 2)
2 (0, 1)
3 (2, 6)
4 (1, 3)
5 (4, 5)
6 (3, 7)
7 (5, 7)
8 (6, 7)
9 (1, 5)
10 (4, 6)
11 (2, 3)

Indentation

Every cube can be indented at each corner to all axis by 8 steps. In total there are 9 position/level on each axis. The
following diagram shows the indentation levels of Corner 1 on the x-axis.

Neighbors

1.1. Development 35

Inexor Vulkan Renderer, Release v0.1-alpha.3

Table 7: Neighbor Order
ID Relative Coordinates
0 (-1, -1, -1)
1 (-1, -1, 0)
2 (-1, -1, 1)
3 (-1, 0, -1)
4 (-1, 0, 0)
5 (-1, 0, 1)
6 (-1, 1, -1)
7 (-1, 1, 0)
8 (-1, 1, 1)
9 (0, -1, -1)
10 (0, -1, 0)
11 (0, -1, 1)
12 (0, 0, -1)
13 (0, 0, 1)
14 (0, 1, -1)
15 (0, 1, 0)
16 (0, 1, 1)
17 (1, -1, -1)
18 (1, -1, 0)
19 (1, -1, 1)
20 (1, 0, -1)
21 (1, 0, 0)
22 (1, 0, 1)
23 (1, 1, -1)
24 (1, 1, 0)
25 (1, 1, 1)

Format Specification

Using this binary format syntax.

Cube Types

0 - EMPTY The cube does not exist, nothing to render.

1 - SOLID One solid cube.

2 - NORMAL An indented cube, with at least one intended corner.

3 - OCTANT The octree is subdivided into 8 sub cubes.

Note: The Format numbers are just to difference between the formats and not to describe an versioning.

36 Chapter 1. Documentation

Inexor Vulkan Renderer, Release v0.1-alpha.3

Sauerbraten

This part only shows, how Sauerbraten saves the octrees in general. It does not show the whole format. As Sauerbraten
has one cube type more, the formats can only be compared to Inexors partially.

| ENDIANNESS : little
| bit : 1 // A bit, 0 or 1.
| uByte : 8 // An unsigned byte.

def get_cube() {
> uByte (1) : cube_type // cube type, actually only 3 bits are used, but only 4␣

→˓types (the first two bits, can be compared to our cubes)
switch (cube_type) {

case 0: // octant
// nothing

case 1: // empty
// nothing

case 2: // solid
// nothing

case 3: // normal
for (0..11 : corner_number) {

> uByte (1) // edge indent
}

}
} // get_cube
get_cube()

Inexor I

File Extension: .nxoc - Inexor Octree

| ENDIANNESS : little
| bit : 1 // A bit, 0 or 1.
| uByte : 8 // An unsigned byte.
| uInt : 32 // An unsigned integer.

> uByte (13) // string identifier: "Inexor Octree"
> uInt (1) // version

def get_cube() {
> bit (2) uByte : cube_type // cube type

switch (cube_type) {
case 0: // empty

// nothing
case 1: // fully

// nothing
case 2: // indented

for (0..7 : corner_number) {
> bit (1) : x_axis // is x axis indented
if (x_axis == 1) { // x axis is indented

> bit (3) // indentation level as value + 1
(continues on next page)

1.1. Development 37

Inexor Vulkan Renderer, Release v0.1-alpha.3

(continued from previous page)

}
> bit (1) : y_axis // is y axis indented
if (y_axis == 1) { // y axis is indented

> bit (3) // indentation level as value + 1
}
> bit (1) : z_axis // is z axis indented
if (z_axis == 1) { // z axis is indented

> bit (3) // indentation level as value + 1
}

}
case 3: // octants

for (0..7 : sub_cube) {
get_cube() // recurse down

}
}

} // get_cube
get_cube()

The corner position at one axis is calculated relative from the corner starting as 0 + indentation level.

Inexor II

File Extension: .nxoc - Inexor Octree

| ENDIANNESS : little
| bit : 1 // A bit, 0 or 1.
| uByte : 8 // An unsigned byte.
| uInt : 32 // An unsigned integer.

> uByte (13) // string identifier: "Inexor Octree"
> uInt (1) // version

def get_cube() {
> bit (2) uByte : cube_type // cube type

switch (cube_type) {
case 0: // empty

// nothing
case 1: // fully

// nothing
case 2: // indented

for (0..11 : edge_id) {
> bit (2) uByte : indent // edge indentation
switch (indent) {

case 0: // not indented
break

case 1: // end corner is indented
case 2: // start corner is indented

> bit (3) // indentation offset, starting from the specified␣
→˓corner

break
(continues on next page)

38 Chapter 1. Documentation

Inexor Vulkan Renderer, Release v0.1-alpha.3

(continued from previous page)

case 3: // both sides indented
> bit (5) // indentation level and offset, see below for more␣

→˓information
}

}
case 3: // octants

for (0..7 : sub_cube) {
get_cube() // recurse down

}
}

} // get_cube
get_cube()

Calculating edge indentation value

The indentation along the edge axis between two corners presented by a unique value. The indentation level starts with
0 at the starting corner and goes to 8 at the ending corner. We are assuming that both ends of the edge are indented by
at least one. (Start at 0, is actually already indented by one).

Using 𝑖 as the indentation value, 𝑠 as the indentation start position and 𝑜 as the offset between the start and end position.
𝑖 = 8 * 𝑠+ 𝑜− 𝑠2+𝑠

2 ; 𝑠, 𝑜 ∈ [0, 6]; 𝑠 <= 𝑜

Resulting into values from 0 to 27.

Inexor III

The third format takes advantage of the second format for the double-sided indentations, but makes sure that it is easy
to read and write and not many bitwise operations have to be done. Also the cube type is presented by one byte, even
if only the first two bits are used.

File Extension: .nxoc - Inexor Octree

| ENDIANNESS : little
| bit : 1 // A bit, 0 or 1.
| uByte : 8 // An unsigned byte.
| uInt : 32 // An unsigned integer.

> uByte (13) // string identifier: "Inexor Octree"
> uInt (1) // version

def get_cube() {
> uByte (1) : cube_type // cube type, only the first two bits are used.

switch (cube_type) {
case 0: // empty

// nothing
case 1: // fully

// nothing
case 2: // indented

for (0..11 : edge_id) {
> bit (6) // indentation level and offset, see below for more information

}
case 3: // octants

(continues on next page)

1.1. Development 39

Inexor Vulkan Renderer, Release v0.1-alpha.3

(continued from previous page)

for (0..7 : sub_cube) {
get_cube() // recurse down

}
}

} // get_cube
get_cube()

Calculating edge indentation value

The indentation along the edge axis between two corners presented by a unique value. The indentation level starts with
0 at the starting corner and goes to 8 at the ending corner.

Using 𝑖 as the indentation value, 𝑠 as the indentation start position and 𝑜 as the offset between the start and end position.

𝑖 = 10 * 𝑠+ 𝑜− 𝑠2+𝑠
2 ; 𝑠, 𝑜 ∈ [0, 8]; 𝑠 <= 𝑜

Resulting into values from 0 to 44.

Multi octree collision detection

Octree collision detection allows us to find intersections between octree geometry and a ray, for example the camera
view ray. This is an essential part for the octree editor. Inexor engine allows to have multiple octrees with arbitrary
position and relative size (no support for rotations yet), making collision detection significantly more complex than
single octree traversal:

In the following screenshot, you can see three octrees of different types and different sizes. The octree in the left has 8
sub-cubes (we call a cube which has 8 children Cube::Type::OCTANT in the engine, even if some of them are empty).
The one octree in the midle has no children, it’s just one solid cube (we call it Cube::Type::SOLID). The one in the

40 Chapter 1. Documentation

Inexor Vulkan Renderer, Release v0.1-alpha.3

right has some empty and some solid sub-cubes in it (that’s also an Cube::Type::OCTANT). You can see that these
cubes are not indented at all, because indentation is not taken into account yet for octree collision.1

How to find collisions between octree geometry and a ray in this scene now? For simplicity, we assume that the octrees
are not intersecting each other. Let’s assume we want to write an octree editor. We are obviously only interested in the
intersection which is closest to the camera’s position: if there is another octree behind the current selection, we must
move the camera to it, in order to be able to edit it:2

1 The current implementation of octree-ray intersection only checks for intersections with completely filled cubes and does not take into account
indentations of cubes, as this is not required for an octree editor. The bounding box of an octree is always unchanged, even if the octree geometry itself
has indentations. Taking into account indentations will be required for physics calculations in the future, for example to check collisions between
particles and octree.

2 We could also make the layer which is blocking view invisible for a moment in the future.

1.1. Development 41

Inexor Vulkan Renderer, Release v0.1-alpha.3

We are also only interested in collisions which are in front of our camera view:

Let’s imagine we now have 𝑁 octrees, and we want to find all those which collide with the ray and we want to know
the one which is closest to the camera. Furthermore, since we want to write an octree editor, we want not only the

42 Chapter 1. Documentation

Inexor Vulkan Renderer, Release v0.1-alpha.3

cube which is in selection, but we also want to know which one of the 6 faces of the cube is in selection. In addition,
we want to know the coordinates or the intersection between camera ray and the plane of the selected face. We also
need the closest corner on the selected face and the closest edge, just so we have all the data we could possibly need
for implementing the editor. This leaves us the following questions:

• How do we even determine if there are any collisions occuring at all?

• How do we now find out which of the 𝑁 octrees is in selection?

• How do we determine the octree which is closest to our camera’s position?

Finding the octree closest to the camera

Assuming we have 𝑁 octrees, the first thing we do is to iterate through every one of the 𝑁 octrees and to check for
collision of the camera ray with the bounding sphere of the octree. This is a quick way to optimize the collision in the
beginning and to save a lot of computation time. It is a common trick in computer graphics. If we would check for
every possible collision without this step, the algorithm would be way too slow. So we need to iterate through the 𝑁
octrees we have and calculate the distance 𝑑 between the ray and the center of the octree’s bounding sphere. In our
engine, the center of the octree is also the center of the bounding sphere. We are using glm::intersectRaySphere to
check if a collision is happening. If the bounding sphere check was successful, we also check collision of the ray with
the axis aligned bounding box (aabb). This check is more expensive but also more precise than the bounding sphere
check. However it is only used if the bounding sphere check previously was successful to save performance.

Note: Simply iterating through all 𝑁 octrees is a naive approach. This only works for small number of octrees. Much
better would be to use a hierarchical data structure like a bounding volume hierarchy, which groups objects which are
close to each other into a unified bounding sphere. This hierarchical bounding sphere check is much faster than iterating
through all 𝑁 octrees. There are libraries which could help implement this for Inexor in the future.

Note: Currently we use the entire octree as axis axis aligned bounding box (aabb). However, we could optimize this:
We could fit the bounding box to only the filled cubes of that octree. For example if one half side of the octree is empty,
we could adjust the bounding box to the other half. If a camera ray now collides with the empty part of the octree,
this could give us improved performance, as the bounding box is not hit. Otherwise the subcube iteration would be
executed and come to the same conclusion: only empty subcubes are hit and therefore no collision takes place.

After this step, we have 0 to𝑁 octrees which collide with the ray. The following screenshot shows the possible situations
for 𝑁 = 2:

1.1. Development 43

https://glm.g-truc.net/0.9.5/api/a00203.html
https://developer.mozilla.org/en-US/docs/Games/Techniques/3D_collision_detection#axis-aligned_bounding_boxes
https://en.wikipedia.org/wiki/Bounding_volume_hierarchy
https://developer.mozilla.org/en-US/docs/Games/Techniques/3D_collision_detection#axis-aligned_bounding_boxes

Inexor Vulkan Renderer, Release v0.1-alpha.3

If we have 0 collisions, we can already stop collision detection here because there are no collisions occuring: if a
camera ray intersects an octree, it must also intersect the bounding sphere. The reverse statement is not true: if a ray
collides with a bounding sphere, that does not mean it collides with the octree. It could be a false positive:

44 Chapter 1. Documentation

Inexor Vulkan Renderer, Release v0.1-alpha.3

We now need to find the octree which is closest the camera. Even if the camera is inside of an octree, there could
be multiple octrees which have bounding spheres that intersect the camera ray. The first thing which comes to our
mind is sorting the octrees by distance to the camera: we could calculate the distance 𝑑 between camera’s position and
bounding sphere’s center (= the octree’s center) for every one octree which intersects with the camera ray and order
them by distance:

𝑑 =
√︀
(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2

The one with the lowest distance will be the one which is closest to the camera. This should be the octree we will
perform any further detailed collision checks on. However, there are two things we can already optimize here.

The square of the distance

First, we do not need to sort the octrees by distance. Sorting would mean we need all of the data sorted by distance.
We are only interested in the octree with the smallest distance though. Since we iterate through all of them, we check
if the calculated distance 𝑑 between bounding sphere’s center and camera position is smaller than the stored value, and
if that is the case, store it as the new closest octree.3 This is significantly faster than sorting all octrees. We also lose
information about the distance to all the other octrees in selection, but that’s not important at the moment (at least for
the octree editor that is irrelevant for now). As a second optimization, we should not calculate the distance 𝑑 between
the bounding sphere’s center and the camera’s center, as we are not interested in the exact value of the distance. The
reason we should avoid this is because distance calculation using glm::distance makes an expensive sqrt call, as it needs
to calculate the distance like this:

𝑑 =
√︀
(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2

If we take this equation and square both sides, we obtain 𝑑2, the squared distance:

𝑑2 = (𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2 + (𝑧1 − 𝑧2)
2

This way, we perform no square root calculation. The squared distance 𝑑2 will serve as our value for determination
of the closest octree. Think about it: if the distance 𝑑 is the value which allows us to find the closest octree, the square
of the distance 𝑑2 will work as well. If you take 𝑁 octrees, each one having a distance 𝑑 to the camera’s position, the
order will not change if we square the distance.

Note: For simplicity, we assume that the octrees have a variable position and size, but are not intersecting each
other. If that is the case, the determination of the octree which is closest to the camera would be more complicated.
For example if there would be two octrees, one being closer to the camera than the other, but the one further away has
a bigger size, maybe resulting in faces which are closer to the camera than the other cube. We will implement support
for this in the future.

Finding the leaf node

Now that we have found the octree which is closest to the camera, we need to find a leaf node in the octree which is
being intersected. The most simple case would be if the octree’s root is of type Cube::Type::SOLID, as completely
filled octrees are leaf nodes by definition:

3 To do so, we need to set the initial value of the distance to a maximum value. We use std::numeric_limits<float>::max()

1.1. Development 45

https://glm.g-truc.net/0.9.4/api/a00131.html#ga3fac0e61144f60184d961dd156709dd3
https://www.cplusplus.com/reference/cmath/sqrt/

Inexor Vulkan Renderer, Release v0.1-alpha.3

If the octree’s root is of type Cube::Type::OCTANT, we need to iterate through all 8 sub-cubes. This is described in
the next section.

46 Chapter 1. Documentation

Inexor Vulkan Renderer, Release v0.1-alpha.3

Please note that every octant has 8 sub-cubes, even if some (or even all) of them are of type Cube::Type::EMPTY.4

Note: Technically, the octree’s root could also be of type Cube::Type::EMPTY. In this case, there also no collision
possible. However, such octrees will be skipped when iterating through all possible sub-cubes which could possibly
collide with the ray.

Subcube iteration

So we found the octree which is closest to the camera, but it’s neither completely empty (Cube::Type::EMPTY) nor
completely filled (Cube::Type::OCTANT). We now simply iterate through all 8 sub-cubes and repeat the bounding
sphere and axis aligned bounding box collision checks for every subcube. If a subcube is empty, no collision with it is
possible and it will be excluded from detailed collision checks. We now need to find the sub-cube which is closest to
the camera again. We therefore perform the same search by squared distance as we already did for the octree octrees.
We simply calculate the squared distance from the center of the sub-cube to the camera and if the distance is lower
than the one which is currently stored, we accept it as new closest sub-cube. Imagine a cube is an octant and it has
8 sub-cubes which are all not empty. If a ray goes through that cube, no more than 4 sub-cubes can be intersected.
Therefore we abort the hit collection after 4 hits. Once we determined the sub-cube which is closest to the camera,
we recursively perform this algorithm. The iteration depth can be limited in the engine. A common example of this is
the grid size of the octree editor. So a leaf node is either found if the current subcube is of type Cube::Type::SOLID
or if the iteration depth has been reached. Once a leaf cube was found, we proceed to calculate the selected face, as
described in the following section.

Note: Every cube of type Cube::Type::OCTANT has 8 subcubes. Iterating through all subcubes from index 0 to 7 is
a naive approach as well. Inexor should use a fast octree traversal algorithm in the future. For more information, check
out this paper. Also check out the hero algorithm.

Determination of selected face

Now that we have found the selected cube, we need to determine on which one of the 6 faces (left, right, top, bottom,
front, back) the collision takes place. We are only interested in the intersection which is facing the camera. That is also
the intersection which is closer to the camera position. There is also a backside intersection from the outgoing ray, but
we are not interested in this for now. There are several ways how to determine which face is in collision. We decided
to use the following approach: first we filter out all sides of the cube which are not facing the camera. In order to do
so, let’s take a look at the following equation which describes the angle 𝛼 of two vectors �⃗� and �⃗�:

𝑐𝑜𝑠(𝛼) = �⃗�·⃗𝑏
|𝑎|·|𝑏|

If we define �⃗� as the normal vector on the face and �⃗� as the camera direction vector, we realize that the normal vector
on the cube’s face is no longer facing the camera if the angle 𝛼 becomes greater than 90 degrees. We now think we
should rearrange for the angle:

𝛼 = 𝑐𝑜𝑠−1
(︁

�⃗�·⃗𝑏
|𝑎|·|𝑏|

)︁
However, we can simplify this: If the angle is slightly greater than 90 degrees, the value of 𝑐𝑜𝑠(𝛼) becomes smaller
than 0. If the angle is a little less than 90 degrees, 𝑐𝑜𝑠(𝛼) becomes greater than 0. If we take a look at the right side
of the equation we started with, we can see that the dot product of �⃗� and �⃗� is in the nominator while the product of the
magnitudes is in the denominator. Since the magnitude of a vector is never negative, the product of two magnitudes

4 This has to do with the way the engine lays out memory for the octree data structure. The engine will allocate memory for the empty sub-cube
because it’s faster to change the sub-cube’s data if it gets modified. However, empty sub-cubes will not result in additional vertex or index data being
generated.

1.1. Development 47

https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjo_q2r_IXwAhVPhf0HHWIqD_4QFjACegQIBBAD&url=https%3A%2F%2Flsi.ugr.es%2Fcurena%2Finves%2Fwscg00%2Frevelles-wscg00.pdf&usg=AOvVaw2v-0fVjo4RIDujC0NrJnHM
https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiaoYvhi4bwAhXJhv0HHdpJC1YQFjABegQIBRAD&url=https%3A%2F%2Fdiglib.eg.org%2Fbitstream%2Fhandle%2F10.2312%2FEGGH.EGGH89.061-073%2F061-073.pdf%3Fsequence%3D1%26isAllowed%3Dy&usg=AOvVaw0dbLPIu7T1Cv-e1nO6wF0s

Inexor Vulkan Renderer, Release v0.1-alpha.3

will always be positive. We now see that the sign change is entirely dictated by the nominator. Furthermore, we
already elaborated that it’s comparably expensive to calculate the square root. We can simplify all this to the following
condition: the face on a cube is visible, if the dot product of the two vectors �⃗� and �⃗� is smaller than zero:

𝛼 < 0 for �⃗� · �⃗� < 0

This is quite nice, because the dot product of �⃗� and �⃗� is a cheap calculation. This is another very popular trick in
computer graphics.5

We now simply iterate through all 6 faces of the cube, take the normal vector on that cube face and check if it’s facing
the camera. We are only interested in the planes which are facing the camera.6 If you look at a cube, no more than 3
sides can be visible at the same time. This means we can stop after we found 3 cube sides which are facing the camera.
It could be less than 3 sides though. Imagine you are right on top of a solid cube and your look down on it, only the
top side is visible. If you look from a certain position, only 2 sides are visible.

Note: We could optimize this in the future by doing some coordinate checks of the camera and the octree. For example
if the x and y coordinates are inside the square of the cube, we could only see top or bottom of the cube. However,
since Inexor wants to account for arbitrary rotations around all 3 axis, this is more complex than for unrotated octrees.
We think our current solution is sufficiently performant.

We now have 3 or less sides of the cube facing the camera. We calculate the intersection point between the ray and
every plane which represents a cube face. In order to determine the real intersection, we come back to searching the
lowest squared distance again. However, it is important to state that we can’t use the squared distance to the camera
position in this case. We must calculate the squared distance between the intersection point on every plane and the
center of the cube’s face which is associated to this plane. This way, we find the real intersection point and the selected
corner:

5 In fact this is used during the rasterization step in rendering to discard all triangles which are not facing the camera.
6 For some reasons we might be interested in those sides of a cube which are not facing the camera in the future?

48 Chapter 1. Documentation

Inexor Vulkan Renderer, Release v0.1-alpha.3

Calculation of closest corner

We now successfully determined the selected face and the intersection point. We already know the coordinates of every
one of the 4 corners on that face. In order to determine the nearest corner, we come back to calculating the squared
distance between the intersection point and every corner point. The corner with the lowest squared distance is the
nearest.

1.1. Development 49

Inexor Vulkan Renderer, Release v0.1-alpha.3

Calculation of closest edge

The determination of the closest edge works the same way as the determination of the closest corner: searching the
lowest squared distance between intersection point and center of the four edges on the selected face. To find the edges
which are associated to the selected size, the following array is used. The indices of edges are the same as in the octree
documentation:

using edge_on_face_index = std::array<std::size_t, 4>;

// These indices specify which 4 edges are associated with a given face of the bounding␣
→˓box.
static constexpr std::array BBOX_EDGE_ON_FACE_INDICES{

edge_on_face_index{0, 1, 2, 3}, // left
edge_on_face_index{4, 5, 6, 7}, // right
edge_on_face_index{1, 5, 8, 11}, // front
edge_on_face_index{3, 7, 9, 11}, // back
edge_on_face_index{0, 4, 10, 11}, // top
edge_on_face_index{2, 6, 8, 9} // bottom

};

50 Chapter 1. Documentation

Inexor Vulkan Renderer, Release v0.1-alpha.3

Closing remarks

With this algorithm, we have a good starting point writing an octree editor. However, we know that this is not the fastest
solution possible. Nevertheless, it is a solution which is easy to understand, easy to improve and easy to optimize for
sure. Furthermore, it will be easy to parallelize it. All the aspects which could be improved have been listed on this
page.

Management of command pools and command bufers

Inexor engine’s command pool and command buffer management code is based on the following resources:

• Tips and Tricks: Vulkan Dos and Don’ts

• Writing an efficient Vulkan renderer

• Themaister’s Granite renderer

• Multi-Threading in Vulkan

From that we concluded our solution should look like this:

• The device wrapper should be exclusively responsible for the management of command pools and command
buffers

• The command pool and command buffer management system must be thread safe

• We should have only one command pool per thread per queue (as is recommended)

• Each command buffer should be allocated from the command pool which is associated to the current thread

• Command buffers must be reused instead of being allocated and destroyed every time

• We should abstract command buffers as much as possible

• The solution must support an arbitrary number of threads and an arbitrary number of command buffers per thread

• Command buffer recording should be done with the VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT
flag

• We should start with graphics command pools only and work on other pool types (transfer, compute..) later
(GitHub issue https://github.com/inexorgame/vulkan-renderer/issues/486)

Note: Do not forget that we need to specify on which queue the command pool will operate on. We are currently using
the graphics queue for copy operations, but there are other queue types such as transfer queues or compute queues. We
will need to create separate command pools on a per-thread basis once we want to use those queues.

Thread-local command pools

The command pools are managed exclusively by the device wrapper class. Inside of it, there is a std::vector of
std::unique_ptr of the CommandPool wrapper class:

std::vector<std::unique_ptr<CommandPool>> m_cmd_pools;
std::mutex m_mutex;

Note: It must be a std::vector<std::unique_ptr<CommandPool>> and not a std::vector<CommandPool>
because std::vector is allowed to reorder the memory and we want to store a pointer into the std::vector!

1.1. Development 51

https://developer.nvidia.com/blog/vulkan-dos-donts/
https://zeux.io/2020/02/27/writing-an-efficient-vulkan-renderer/
https://github.com/Themaister/Granite
https://community.arm.com/arm-community-blogs/b/graphics-gaming-and-vr-blog/posts/multi-threading-in-vulkan
https://github.com/inexorgame/vulkan-renderer/issues/486

Inexor Vulkan Renderer, Release v0.1-alpha.3

Since the command pools are owned by a thread-global device object, the vector must be protected by a mutex. But
how do we set up a command pool on a per-thread basis and how do we get the command pool for the current thread?
To do this, we have a non-owning thread_local pointer to the thread’s command pool which points to an entry inside
the device’s command pool vector, and is initialized the first time the getter is called.

CommandPool &Device::thread_graphics_pool() {
// Note that thread_graphics_pool is implicitely static!
thread_local CommandPool *thread_graphics_pool = nullptr; // NOLINT
if (thread_graphics_pool == nullptr) {

auto cmd_pool = std::make_unique<CommandPool>(*this, "graphics pool");
std::scoped_lock locker(m_mutex);
thread_graphics_pool = m_cmd_pools.emplace_back(std::move(cmd_pool)).get();

}
return *thread_graphics_pool;

}

This get method is private. It is used only internally for the command buffer request system, as explained in the next
section.

Command buffer request system

Inexor engine uses a command buffer request system. If you need to record and submit a command buffer in any place
in the engine code, you can call m_device.request_command_buffer(). You should have a reference to the device
wrapper m_device available in the part of the code you want to use the command buffer. The command buffers are
managed by the command pool wrapper and can only be accessed through the the wrapper. However, the command
pools themselves are managed by the device wrapper. This means command pools are never directly exposed in the
rest of the engine code. You request a command buffer from the device wrapper, and the request will be redirected
internally to the thread local command pool:

const CommandBuffer &Device::request_command_buffer(const std::string &name) {
return thread_graphics_pool().request_command_buffer(name);

}

The request method of the command pool wrapper tries to find a command buffer which is currently not used anywhere
else. It does so by testing the state of the command buffer’s fence. If no free command buffer is found, a new one is
simply allocated. Note that this is thread local, so we need no synchronization here. Note that the command buffer
request method resets the command buffer’s fence. The request method will call begin_command_buffer before
returning the requested command buffer.

const CommandBuffer &CommandPool::request_command_buffer(const std::string &name) {
// Try to find a command buffer which is currently not used
for (const auto &cmd_buf : m_cmd_bufs) {

if (cmd_buf->fence_status() == VK_SUCCESS) {
// Reset the command buffer's fence to make it usable again
cmd_buf->reset_fence();
m_device.set_debug_marker_name(*cmd_buf->ptr(), VK_DEBUG_REPORT_OBJECT_TYPE_

→˓COMMAND_BUFFER_EXT, name);
cmd_buf->begin_command_buffer();
return *cmd_buf;

}
}
// We need to create a new command buffer because no free one was found
// Note that there is currently no method for shrinking m_cmd_bufs, but this should␣

→˓not be a problem (continues on next page)

52 Chapter 1. Documentation

Inexor Vulkan Renderer, Release v0.1-alpha.3

(continued from previous page)

m_cmd_bufs.emplace_back(std::make_unique<CommandBuffer>(m_device, m_cmd_pool,
→˓"command buffer"));
return *m_cmd_bufs.back();

}

After this, you can use it to record and submit your command buffer. You can also use the executemethod, as explained
in the next section.

Device wrapper’s execute method

To automate beginning and ending of command buffer recording and submission, we created the execute method of the
device wrapper. This is quire helpful and it is recommended to use it instead of requesting command buffer handles
manually. The execute method takes a lambda as argument and requests a command buffer. After execution, it calls
submit_and_wait. For debugging purposes, it also assigns a debug name to the command buffer which executes your
lambda:

void Device::execute(const std::string &name, const std::function<void(const␣
→˓CommandBuffer &cmd_buf)> &cmd_lambda) {
// TODO: Support other queues (not just graphics)
const auto &cmd_buf = thread_graphics_pool().request_command_buffer(name);
// Execute the lambda
cmd_lambda(cmd_buf);
cmd_buf.submit_and_wait();

}

Note: Note that execute will wait for the command buffer submission and execution to complete using a fence,
meaning it’s a blocking operation. In case you don’t want this, you should be experienced enough to use the
request_command_buffer method manually and to do your synchronization yourself.

Here is an example for an image copy operation which uses the execute method:

m_device.execute(m_name, [&](const CommandBuffer &cmd_buf) {
cmd_buf.change_image_layout(m_texture_image->get(), VK_IMAGE_LAYOUT_UNDEFINED, VK_

→˓IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL)
.copy_buffer_to_image(texture_data, static_cast<VkDeviceSize>(texture_size), m_

→˓texture_image->get(), copy_region, m_name)
.change_image_layout(m_texture_image->get(), VK_IMAGE_LAYOUT_TRANSFER_DST_

→˓OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
});

Note: Inexor engine’s command buffer request system does not differentiate between a normal command
buffer and a command buffer which is used for single submission. In fact, all command buffers have the
VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT when calling begin_command_buffer.

1.1. Development 53

Inexor Vulkan Renderer, Release v0.1-alpha.3

1.1.12 GitHub Issue Labeling

The labels are written in two parts, separated by a colon. The first part is the label category, the second the name.

Table 8: Categories
Abbreviation Name Description
cat category main category
feat feature specific feature
prio priority priority
org organization organization/ whats the state of this issue
diff difficulty which skill is required to work on this
plat platform platform specific issue

Some labels are mutual to each other like org:in progress and org:on hold. Also some labels should not be
specified on closed issues like org:in progress.

Note: Github will use black as font color if the background is too light.

Preview Category Name Description Color
cat benchmark testing code performance with automated benchmarking #C0E169
cat bug bug/error/mistake which limits the program #FF0000
cat dependency dependency management #BFD4F2
cat dev tools building/ compiling the program, cmake configuration and general development tools #78A600
cat documentation documentation #D1D100
cat enhancement enhancement/requested feature/update of existing features #0025FF
cat performance performance #FF6868
cat refactor refactor/clean up/simplifications/etc. #FF8C00
cat review review #69D100
cat security security/ privacy issues #B60205
cat testing testing #C0E169
diff first issue good first issue to start contributing #FEF2C0
diff beginner beginner skills required #FEF2C0
diff intermediate intermediate skills required #FEF2C0
diff advanced advanced skills required #FEF2C0
diff expert expert skills required #FEF2C0
org discussion needs further discussion with others #DDDDDD
org duplicate duplicate issue #DDDDDD
org help wanted help wanted #DDDDDD
org idea needs further elaboration before it is possible to continue #DDDDDD
org in progress somebody is working on this #DDDDDD
org invalid invalid issue #DDDDDD
org on hold on hold, until . . . #DDDDDD
org planned planned/ prepared issue #DDDDDD
org third party this issue depends on a third party project and is out of our hands #DDDDDD
org triage labels have to be specified #D9534F
org wontfix wont be fixed, ever #DDDDDD
feat ci continuous integration #D4C5F9
feat concurrency multithreading, asynchronous events, concurrency #D4C5F9
feat render graph render graph #D4C5F9

continues on next page

54 Chapter 1. Documentation

Inexor Vulkan Renderer, Release v0.1-alpha.3

Table 9 – continued from previous page
Preview Category Name Description Color

feat gui graphical user interface #D4C5F9
feat input keybord/mouse input #D4C5F9
feat lightning light system #D4C5F9
feat logging logging system #D4C5F9
feat octree octree, cube computations #D4C5F9
feat rendering rendering #D4C5F9
feat settings settings #D4C5F9
feat shader shaders #D4C5F9
feat texture textures #D4C5F9
plat linux Linux specific issue #FFC683
plat macos MacOS specific issue #FFC683
plat windows Windows specific issue #FFC683
prio blocker this issue cannot be moved to a later milestone, also this label cannot be removed #B60205
prio high high priority #FF0000
prio low low priority #AD8D43

1.2 Source Code

1.3 How to contribute

1.3.1 Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body size,
disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic
status, nationality, personal appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting or derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

1.2. Source Code 55

Inexor Vulkan Renderer, Release v0.1-alpha.3

• Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team
at info@inexor.org. All complaints will be reviewed and investigated and will result in a response that is deemed
necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard
to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at https://www.
contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see https://www.contributor-covenant.org/faq

1.3.2 Licenses

In general we accept every widely acknowledged license which allows to share, modify, share the modified work, make
commercial use or any combination of these. The licenses we accept are listed here, and below are the ones we do not.
If you are not sure about something or the license doesn’t appear in these lists, don’t hesitate to ask us about it on our
Discord.

56 Chapter 1. Documentation

https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/faq
https://discord.com/invite/acUW8k7

Inexor Vulkan Renderer, Release v0.1-alpha.3

List of accepted licenses

• CC0 1.0 or any later version

• CC BY 3.0 or any later version

• CC BY-SA 3.0 or any later version

• ZLIB

• MIT

List of licenses we don’t accept:

The following licenses either have a non-derivative or non-commercial section:

• CC BY-ND any version

• CC BY-NC any version

• CC BY-NC-ND any version

• CC BY-NC-SA any version

• No license at all

Special notes

We reject content which is licensed under the terms of a license which aims at one special jurisdiction. We consider
ourselves as an international community and we define freedom as the freedom for everyone, everywhere. Please,
don’t use licenses which could cause trouble, e.g. all Creative Commons licenses before the 4.0 versions have local
derivations for a lot of countries (e.g. CC BY 3.0 DE). Starting with CC v4.0 there is only one international license to
address this issue.

We also don’t accept Public Domain. The problem with Public Domain is that the definition is different from jurisdiction
to jurisdiction, there isn’t an international declaration. Also in some jurisdiction it’s very complicated till impossible
to make your work Public Domain before your rights expire after the ordinary time.

Instead of Public Domain we recommend using CC0 (Creative Commons Zero). CC0 is basically a license which gives
the creator a way to waive all their copyright and related rights in their works to the fullest extent allowed by law + a
Public Domain fallback if the waiving of the rights isn’t possible under special circumstances.

Common mistakes:

• Missing version number of the license (if exists), e.g. “Creative Commons BY”.

• Missing full name of the license, e.g. “licensed under a Creative Commons license”.

• Mix between the short form and the complete name, e.g. “Creative Commons BY Attribution 4.0”.

1.3. How to contribute 57

https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://zlib.net/zlib_license.html
https://opensource.org/licenses/MIT
https://creativecommons.org/licenses/by-nd/2.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://en.wikipedia.org/wiki/Creative_Commons_jurisdiction_ports
https://en.wikipedia.org/wiki/Creative_Commons_jurisdiction_ports
https://creativecommons.org/licenses/by/3.0/de/deed.en
https://creativecommons.org/about/cc0

Inexor Vulkan Renderer, Release v0.1-alpha.3

1.3.3 Contribute code

• If you want to contribute code, join our Discord and have a look at our vulkan-renderer repository.

• Try to find a first good issue in our issue tracker.

• Open a pull request.

• We want to keep commit as small in size as possible.

Signing commits

• We encourage you to sign your commits, although this is not a strict requirement from our side.

• You can find help on how to sign commits in GitHub’s docs.

Commit naming convention

The commit naming convention will be checked by our continuous integration. In order to be valid, the followin rules
must all be fulfilled:

• The commit message must begin with a category in square brackets which describes the code part that was
changed

• The commit category must not be empty

• A commit category must contain at least two characters. Allowed characters are: letters a-z, numbers 0-9, and
-. For example [gpu-texture]

• If two code parts are affected, separate the categories using |, for example [gpu-texture|gpu-info]

• If three or more code parts are affected, use [*] as category

• Leave one space after the commit category

• The commit message itself must consist of the following characters: letters a-z, numbers 0-9

• The commit message must begin with a capital letter

• The commit message must exist and it must not be empty

• The commit message must not end with ., ! or ?

Examples

• [docs] Explain commit naming convention

• [gpu-info] Don't display empty gpu info queries as error

• [gpu-info|representation] Cleanup

• [ci] Add commit naming check

• [*] Move GPU info to vk tools

58 Chapter 1. Documentation

https://discord.com/invite/acUW8k7
https://github.com/inexorgame
https://github.com/inexorgame/vulkan-renderer/issues
https://github.com/inexorgame/vulkan-renderer/pulls
https://docs.github.com/en/github/authenticating-to-github/signing-commits

Inexor Vulkan Renderer, Release v0.1-alpha.3

Additional information

The regex pattern for the commit category is *|(?:[a-z0-9]{2,}[\s|-]?)+, the pattern for the message is
[A-Z0-9].+[^.!?,\s]

1.3.4 Contribute art

If you want to contribute textures, sounds or models, check out our website or join our Discord server to find more
information about supported formats etc.

1.3.5 List of Contributors

We are always open for suggestions or pull requests. You can search after diff:first issue for good issues to get
in touch with this project.

Join our Discord server.

IAmNotHanni

• Project and community management.

• Large portion of Vulkan renderer.

Iceflower

• Threadpool improvements.

• Advice on thread safety and code design.

• CMake improvements and feedback.

• Feedback on Travis CI and Github actions.

• Support for Exhale.

• Overall contributions to CI (Travis/Github actions).

• Replaced unscoped enums with scoped enums.

• Replaced macros with constexpr’s.

• Improvement of overall project structure.

• Overall code cleanup.

• Read the docs support.

movabo

• First generation of octree engine code.

authenticate

• Refactoring of texture loading code.

• Error texture generation.

Shikijo

• Pointed out broken glsl compiler batch script on Windows.

Croydon

• Advice on conan package manager.

1.3. How to contribute 59

https://inexor.org/wiki/content/
https://discord.com/invite/acUW8k7
https://discord.gg/acUW8k7
https://github.com/IAmNotHanni
https://github.com/IceflowRE
https://exhale.readthedocs.io/en/latest/
https://github.com/movabo
https://github.com/authenticate
https://github.com/Shikijo
https://github.com/Croydon
https://conan.io/

Inexor Vulkan Renderer, Release v0.1-alpha.3

westernheld

• Testing and debugging.

uilianries

• Travis CI setup

yeetari

• Building and testing vulkan-renderer on Linux.

• Added USE_VMA_RECORDING CMake option so vulkan-renderer can be build on Linux until VMA
recording has been ported.

• Overall contributions to CI (Travis/Github actions).

• Add build instructions for gentoo.

• Replace _DEBUG with NDEBUG.

• std::vector size check improvement.

• Help with git.

• Overall code cleanup.

• Getting vulkan-renderer compile and run on Linux.

• Overall CMake expertise.

• Compiling SPIR-V shaders through CMake setup.

azkoon

• Help with Discord server.

• Help with wiki.

joetoth

• Help with Discord server.

1.4 Frequently asked questions

Please visit inexor.org and join our Discord server.

• What is Inexor?

• Which platforms are supported?

• What is the current state of the project?

• How is Inexor organized?

• How to contact us?

• How to build?

• Where to find Inexor’s documentation?

• What is Vulkan API?

• Why is Vulkan API the future?

• Can you explain Vulkan API in simple terms?

60 Chapter 1. Documentation

https://github.com/westernheld
https://github.com/uilianries
https://stackoverflow.com/questions/61209668/travis-ci-reports-linker-errors-for-gcc-7-for-a-vulkan-project
https://github.com/yeetari
https://github.com/azkoon
https://github.com/joetoth
https://inexor.org
https://discord.com/invite/acUW8k7

Inexor Vulkan Renderer, Release v0.1-alpha.3

• How difficult is development with Vulkan API?

• Does my graphics card support Vulkan API?

• Will you support other rendering APIs?

• Which topics are currently not in focus of development?

1.4.1 What is Inexor?

images/inexor2.png

Inexor is a MIT-licensed open-source project which develops a new 3D octree game engine by combining modern C++
with Vulkan Vulkan API.

We have the following goals for the Inexor engine:

• Combine modern C++ with Vulkan API.

• Task-based parallelization using a threadpool and a work stealing queue.

• Generic rendering architecture using a rendergraph.

• Create a Vulkan API codebase which can be used in production.

We are using good software engineering practices:

• Resource acquisition is initialization (RAII).

• Software design patterns.

• Continuous integration (CI) using GitHub actions.

• Code design by strict compliance with the C++ core guidelines and Scott Meyers books.

• Use of the new C++ standard library (C++11, C++14, and C++17).

• Code documentation using doxygen.

• Automatic unit testing and benchmarking.

• Static code analysis with clang-tidy.

• Automatic code formatting using clang-format.

• CMake project setup.

You can find Vulkan example code online which follows the mantra “don’t use this in production - it’s tutorial code”.
Inexor disagrees with this as we believe that defeats its own purpose. If example code is not meant to be used in
some other projects then there’s something wrong with that example code. Many projects don’t use a proper memory
management library like VMA or they do not abstract their code using RAII, but use a lot of code duplication instead.
Inexor is designed to be used in production. Bear in mind however that Inexor is also still far away from being a finished
game engine.

1.4. Frequently asked questions 61

https://awesomecpp.com/
https://www.khronos.org/vulkan/
https://www.youtube.com/watch?v=TC9zhufV_Z8
https://www.khronos.org/vulkan/
https://youtu.be/JpmK0zu4Mts?t=500
https://community.khronos.org/t/opinions-on-using-threadpools-for-designing-a-vulkan-game-engine/105519
https://stackoverflow.com/questions/2101789/implementation-of-a-work-stealing-queue-in-c-c
https://youtu.be/6NWfznwFnMs?t=1845
https://de.slideshare.net/DICEStudio/framegraph-extensible-rendering-architecture-in-frostbite
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-raii
https://refactoring.guru/
https://en.wikipedia.org/wiki/Continuous_integration
https://github.com/features/actions
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://www.oreilly.com/library/view/effective-modern-c/9781491908419/
https://en.cppreference.com/w/cpp/header
https://www.doxygen.nl/index.html
https://github.com/google/googletest
https://github.com/google/benchmark
https://en.wikipedia.org/wiki/Static_program_analysis
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/docs/ClangFormat.html
https://clang.llvm.org/docs/ClangFormat.html
https://cmake.org/
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-raii

Inexor Vulkan Renderer, Release v0.1-alpha.3

1.4.2 Which platforms are supported?

• We support x64 Microsoft Windows 8, 8.1, and 10.

• We support every x64 Linux distribution for which Vulkan drivers exist.

• We have specific build instructions for Gentoo and Ubuntu. If you have found a way to set it up for other Linux
distributions, please open a pull request and let us know!

• We do not support macOS or iOS because it would require us to use MoltenVK to get Vulkan running on Mac
OS. Additionally, this would require some changes in the engines as not all of Inexor’s dependencies are available
on macOS or iOS.

• We also do not support Android because this would require some changes in the engines as not all of Inexor’s
dependencies are available on Android.

1.4.3 What is the current state of the project?

We are still in very early development, but this project can already offer:

• A modern C++20 codebase with CMake setup.

• Stable builds for Windows and Linux using Continuous Integration (CI).

• A rendergraph in early development.

• ImGui integration using separate renderpasses.

• RAII wrappers for various Vulkan resources.

• Extensive logging with spdlog.

• Vulkan Memory Allocator for graphics memory management.

• VMA memory replays for debugging are already working.

• Full RenderDoc integration with internal resource naming.

1.4.4 How is Inexor organized?

• Inexor has no central authority.

• It’s a headless collective which makes decisions through creative discussions.

• We are welcoming new contributors to our team.

62 Chapter 1. Documentation

https://www.gentoo.org/
https://ubuntu.com/download
https://github.com/inexorgame/vulkan-renderer/pulls
https://github.com/KhronosGroup/MoltenVK
https://en.wikipedia.org/wiki/Continuous_integration
https://de.slideshare.net/DICEStudio/framegraph-extensible-rendering-architecture-in-frostbite
https://github.com/ocornut/imgui
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-raii
https://github.com/gabime/spdlog
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator#binaries
https://renderdoc.org/
https://www.saschawillems.de/blog/2016/05/28/tutorial-on-using-vulkans-vk_ext_debug_marker-with-renderdoc/

Inexor Vulkan Renderer, Release v0.1-alpha.3

1.4.5 How to contact us?

Please visit inexor.org and join our Discord server.

1.4.6 How to build?

If you have any trouble building please open a ticket or join our Discord.

How to build vulkan-renderer?

1.4.7 Where to find Inexor’s documentation?

• Read our docs here.

1.4.8 What is Vulkan API?

Inexor uses Vulkan API as rendering backend. Vulkan is a new, multi platform low level API (application program-
ming interface) for high-performance graphics programming and computing. It is the successor to OpenGL, and it is
important to state that is is very different from it. Vulkan is not just a new version of OpenGL or an extension of it.
Instead, Vulkan is a very low level API which allows for much deeper control over the graphics card and the driver, like
DirectX 12 or Apple’s Metal. Unlike OpenGL, Vulkan API is build in a way it fits the architecture of modern graphics
cards. This offers better performance due to reduction of overhead and driver guesswork during runtime. This results in
higher frame rate, more predictable CPU workload and a lower memory usage. The most important benefit of Vulkan is
the fact that it allows for multithreaded rendering, which is not possible in OpenGL at all. In general, Vulkan does a lot
of work during the initialization of the application but therefore reduces work during rendering. Since Vulkan is much
more explicit in terms of code, it foces you to think about the structure and architecture of your code. Both Vulkan and
OpenGL are being developed by the Khronos Group. Vulkan is being developed through an unprecedented collabora-
tion of major industry-leading companies (Google, Intel, AMD, NVidia, Sony, Samsung, Huawei, Qualcomm, Valve
Software and many more). Vulkan is the only multi platform low level graphics API.

1.4.9 Why is Vulkan API the future?

Performance

• Lower and more predictable CPU load which results in better performance and a reduction of driver guesswork.

• Vulkan API is asynchronous and encourages multithreaded rendering. This is not possible with OpenGL!

• The low level API design of Vulkan allows for advanced optimizations such as rendergraphs for generic rendering
architectures.

1.4. Frequently asked questions 63

https://inexor.org
https://discord.com/invite/acUW8k7
https://github.com/inexorgame/vulkan-renderer/issues
https://discord.com/invite/acUW8k7
https://inexor-vulkan-renderer.readthedocs.io/en/latest/development/building.html
https://inexor-vulkan-renderer.readthedocs.io/en/latest/
https://www.khronos.org/vulkan/
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/DirectX
https://en.wikipedia.org/wiki/Metal_(API)
https://stackoverflow.com/questions/56766983/what-can-vulkan-do-specifically-that-opengl-4-6-cannot
https://stackoverflow.com/questions/11097170/multithreaded-rendering-on-opengl
https://www.khronos.org/
https://www.khronos.org/members/list
https://www.khronos.org/members/list
https://stackoverflow.com/questions/56766983/what-can-vulkan-do-specifically-that-opengl-4-6-cannot
https://www.reddit.com/r/vulkan/comments/52aodq/multithreading_in_vulkan_where_should_i_start/
https://de.slideshare.net/DICEStudio/framegraph-extensible-rendering-architecture-in-frostbite

Inexor Vulkan Renderer, Release v0.1-alpha.3

• It also wants you to use the GPU asynchronously, sometimes referred to as GPU multithreading.

• Vulkan allows the use of multiple GPUs, even if they are not physically linked via crossfire bridge.

• The reduction of CPU workload and it’s improved predictability can enforce the GPU to be the limiting factor of
performance, as it should be.

Memory efficiency

• Vulkan gives much deeper control and better interfaces over graphics and system memory.

• Vulkan API enforces memory management to be done by the application rather than the driver.

• Since the application knows best about the importance of every resource it uses, Vulkan API allows for a better
memory usage.

Architecture

• Unlike OpenGL, Vulkan fits the design of modern GPUs as it is not just one single state machine. This means
Vulkan API was designed from the beginning to match the architecture of modern graphics cards. OpenGL
however still matches the design of graphics cards from the time it was invented in the 1990s.

• Vulkan is a fresh start, whereas OpenGL contains a myriad of hacks to support very rare use cases.

• Vulkan has layers and extensions as part of its design. You can check for supported GPU plugins on the target
machine and enable them as needed.

• Vulkan API itself is completely platform agnostic.

• Available on a variety of platforms: Windows, Linux, mobile devices and much more!

• The ending of the OpenGL era has begun.

• Vulkan is being developed through an unprecedented collaboration of major industry-leading companies. It is
not being developed by one company only (like Microsoft’s DirectX for example).

• As Vulkan’s motto states, it really is industry-forged.

Consistency and standardization

• Vulkan precompiles shaders to a standardized bytecode format called SPIR-V. This also reduces driver guesswork
during runtime.

• The explicit design of Vulkan gives much deeper control and avoids driver guesswork and undefined behavior of
graphics drivers.

Debugging tools

• Validation layers and diagnostics can be independently activated during development, allowing better error han-
dling and debugging compared with OpenGL or DirectX.

• Upon release builds, the validation layers can be turned off easily.

• Vulkan API applications can be debugged with RenderDoc.

• The Vulkan specification is very easy to read and it is the central guideline for how to use the API.

Open Source

• Vulkan API and some Vulkan graphics card drivers are open source.

64 Chapter 1. Documentation

https://stackoverflow.com/questions/31282678/what-is-the-opengl-state-machine
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#extendingvulkan-layers
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#extendingvulkan-extensions
https://www.reddit.com/r/opengl/comments/b44tyu/apple_is_deprecating_opengl/
https://www.khronos.org/members/list
https://en.wikipedia.org/wiki/Standard_Portable_Intermediate_Representation
https://www.khronos.org/spir/
https://github.com/KhronosGroup/Vulkan-ValidationLayers
https://renderdoc.org/
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html
https://en.wikipedia.org/wiki/Open_source

Inexor Vulkan Renderer, Release v0.1-alpha.3

1.4.10 Can you explain Vulkan API in simple terms?

• Vulkan API gives programmers much deeper control over the gamer’s hardware.

• If applied correctly, Vulkan can result in a significant performance boost.

• The API encourages the programmers to think in detail about graphics cards and their game engine.

• It offers advanced optimization techniques which can result in a lower RAM and video memory usage.

• Using Vulkan can yield in lower and more predictable CPU usage.

• Vulkan allows programmers to make more effective use of multiple CPU cores.

1.4.11 How difficult is development with Vulkan API?

• This API does a lot of initialization during the loading phase of the application.

• The key to success is a good abstraction of Vulkan API based on the needs of the application/game.

• Vulkan is a C-style API. In simplified terms you fill out structures which start with Vk.. and submit them together
with other parameters to vk... functions. That’s it. No complex interfaces.

• Vulkan API has a very good documentation.

• The challenges of Vulkan game/engine development boil down to basic programming challenges: abstraction,
resource management and parallelization.

• You may want to read Vulkan in 30 minutes by Baldur Karlsson.

1.4.12 Does my graphics card support Vulkan API?

• You can look up your graphics card in the Vulkan hardware database by Sascha Willems.

• Every new graphics card which is coming out these days supports Vulkan API.

• Vulkan is also supported on older graphics cards going back to Radeon HD 7000 series and Nvidia Geforce 6
series.

1.4.13 Will you support other rendering APIs?

• No, because testing for Vulkan already takes a lot of time and there is no sense in supporting deprecated tech-
nology.

• Some studios like id-software also dropped OpenGL entirely.

• Vulkan API is the only low level multi platform graphics and compute API.

1.4. Frequently asked questions 65

https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html
https://renderdoc.org/vulkan-in-30-minutes.html
https://github.com/baldurk/renderdoc
https://vulkan.gpuinfo.org/
https://www.saschawillems.de/
https://en.wikipedia.org/wiki/Radeon_HD_7000_series
https://en.wikipedia.org/wiki/GeForce_6_series
https://en.wikipedia.org/wiki/GeForce_6_series
https://youtu.be/0R23npUCCnw?t=252

Inexor Vulkan Renderer, Release v0.1-alpha.3

1.4.14 Which topics are currently not in focus of development?

• We are currently focusing on the renderer and Vulkan API. When the time has come, we will take parallelization
into account.

• A game engine needs other components besides rendering of course. However, we are currently not focusing
on the following topics: networking, sound, physics, packaging of game engine resources and everything else
which is not related to rendering.

• We will not begin to support additional platforms besides Linux and Windows in the near future.

1.5 Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog and this project adheres to Semantic Versioning.

You can find all releases in our GitHub repository.

1.5.1 v0.1-alpha.3 (17 May 2020)

Changed

• RAII in shader code

• RAII in shaders, gpu memory buffers, staging buffers, mesh buffers and textures

• RAII in descriptors

• RAII VkInstance

• RAII Swapchain

• Removed manager classes entirely.

1.5.2 v0.1-alpha.2 (26 Apr 2020)

Added

• Create a threadpool using C++17.

• Added a simple C++17 implementation of an octree.

• Added event system using boost::signals2.

• Use boost::bitstream for data processing.

• Convert octree data structure to vertex geometry (a mesh buffer).

• Support arbitrary indentations of octree geometry.

• Added a descriptor set layout for simple octree geometry.

• Ported Vulkan Memory Allocator library (VMA) to Linux.

• Added a simple camera movement class.

• Write spdlog console output to a logfile.

66 Chapter 1. Documentation

https://keepachangelog.com/en/1.0.0/
https://semver.org/spec/v2.0.0.html
https://github.com/inexorgame
https://codereview.stackexchange.com/questions/221626/c17-thread-pool
https://www.boost.org/doc/libs/1_61_0/doc/html/signals2.html
https://www.boost.org/doc/libs/master/boost/beast/zlib/detail/bitstream.hpp
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator
https://github.com/gabime/spdlog

Inexor Vulkan Renderer, Release v0.1-alpha.3

Changed

• Improvements considering C++ code quality standards.

• Logging format and logger usage.

Fixed

• Fixed a bug that would render every model twice.

1.5.3 v0.1-alpha.1 (12 Apr 2020)

Added

• Create a CMake file with conan package manager setup.

• Integrate Vulkan Memory Allocator library (VMA).

• Integrate RenderDoc support.

• Use spdlog as logger library.

• Integrate tiny_gltf library.

• Mesh buffer manager for vertex and index buffers based on VMA.

• Texture manager based on stb_image and VMA.

• Uniform buffer manager based on VMA.

• Shader manager for loading SPIR-V shaders.

• Load TOML configuration files using toml11. We deliberately won’t use JSON for this.

• Vulkan fence manager.

• Vulkan semaphore manager.

• GPU info query functions.

• Vulkan debug callbacks.

• Vulkan standard validation layers.

• C++11 std::chrono class.

• Use glm.

• Depth buffer.

• Let VMA generate memory debug logs.

• Associate internal resource names with memory regions to improve debugging.

• Use separate data transfer queue for cpu to gpu memory copies if available.

• Availability checks for Vulkan features.

• Settings decision maker for Vulkan initialization.

• Simple command line argument parser.

• Automatic GPU selection mechanism and -gpu <N> command line argument for preferential GPU.

• Create windows using glfw3.

1.5. Changelog 67

https://cmake.org/
https://conan.io/center/
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator
https://renderdoc.org/
https://github.com/gabime/spdlog
https://github.com/syoyo/tinygltf
https://github.com/ToruNiina/toml11
https://en.cppreference.com/w/cpp/chrono
https://github.com/g-truc/glm
https://www.glfw.org/

Inexor Vulkan Renderer, Release v0.1-alpha.3

• Keyboard input based on glfw3.

• Load geometry of glTF 2.0 files using tiny_gltf library.

• Basic camera class.

1.6 Helpful Links

• Khronos’ website about Vulkan API

• Vulkan API 1.1 specification

1.6.1 Advantages of Vulkan

• NVidia developer: What Is Vulkan?

• Stackoverflow: What can Vulkan do specifically that OpenGL 4.6+ cannot?

• Stackexchange gamedev: What is Vulkan and how does it differ from OpenGL?

• Stuck on OpenGL ES? Time to move on! Why Vulkan is the future of graphics

• A Brief Overview Of Vulkan API

• What advantages does Vulkan have over already established graphics APIs?

1.6.2 Getting started with Vulkan

GDC 2018 - Getting explicit: How Hard is Vulkan really? Dustin Land, Software engineer, id-Software.

Porting your engine to Vulkan or DX12 Adam Sawicki, Developer Software Engineer, AMD.

DevU 2017: Getting Started with Vulkan Developers from Imagination, Google and LunarG.

Vulkan Best Practices Roundtable discussion NVidia, Imagination, Qualcomm, id-Software, EPIC-games and
Google.

Vulkan Memory Management Jordan Logan, Developer technology engineer, AMD.

Vulkan Memory Management Steven Tovey, Developer technology engineer, AMD.

Vulkan: State of the Union 2019 Developers from ARM, LunarG, NVidia.

68 Chapter 1. Documentation

https://www.khronos.org/vulkan/
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html
https://developer.nvidia.com/Vulkan
https://stackoverflow.com/questions/56766983/what-can-vulkan-do-specifically-that-opengl-4-6-cannot
https://gamedev.stackexchange.com/questions/96014/what-is-vulkan-and-how-does-it-differ-from-opengl
https://www.imgtec.com/blog/stuck-on-opengl-es-time-to-move-on-why-vulkan-is-the-future-of-graphics/
https://www.toptal.com/api-developers/a-brief-overview-of-vulkan-api
https://www.quora.com/What-advantages-does-Vulkan-have-over-already-established-graphics-APIs
https://www.youtube.com/watch?v=0R23npUCCnw
https://www.youtube.com/watch?v=6NWfznwFnMs
https://www.youtube.com/watch?v=yHZ3-AMJA6Y
https://www.youtube.com/watch?v=owuJRPKIUAg
https://www.youtube.com/watch?v=rXSdDE7NWmA
https://www.youtube.com/watch?v=zSG6dPq57P8
https://www.youtube.com/watch?v=KLZsAJQBR5o

Inexor Vulkan Renderer, Release v0.1-alpha.3

1.6.3 Beginner Vulkan API tutorials

• Click here to check if your graphics card supports Vulkan API.

• How to learn Vulkan?

• The Vulkan tutorial

• The Vulkan guide

• Sascha Willems’ Vulkan tutorials

• Intel’s Vulkan tutorial: API without secrets

• Qualcomm developer network’s Vulkan tutorials

• Introduction To Vulkan

• Raw Vulkan: An overview on how to program a Hello Triangle Vulkan application from the ground up.

• Vulkan Tutorial - 101

• Mike Bailey’s Vulkan Page

• Using the Vulkan Validation Layers

• Sascha Willems’ tutorial about Vulkan debug markers

• Awesome Vulkan list

1.6.4 Migrating from OpenGL to Vulkan API

• Dustin Land’s blog series ‘I Am Graphics And So Can You’

• Transitioning from OpenGL to Vulkan

• Porting a Graphics Engine to the Vulkan API

1.6.5 Advanced Vulkan API tutorials and articles

• Sascha Willems’ glTF2 + PBR (physically based rendering) demo

• NVidia Developer Blog: Tips and Tricks: Vulkan Dos and Don’ts

• Vulkan in 30 minutes

• Writing an efficient Vulkan renderer

• A simple Vulkan Compute example

• Getting started with Vulkan API on Linux

• Get started with Vulkan on Android

• Use Vulkan API on macOS and iOS using MoltenVK

• Multithreading in Vulkan, where should I start?

• Multi-Threading in Vulkan

• Vulkan Device Generated Commands

• NVidia: Vulkan Memory Management

• Using Vulkan Device Memory

1.6. Helpful Links 69

https://vulkan.gpuinfo.org/
https://www.jeremyong.com/c++/vulkan/graphics/rendering/2018/03/26/how-to-learn-vulkan/
https://vulkan-tutorial.com/
https://vkguide.dev/
https://github.com/SaschaWillems/Vulkan
https://software.intel.com/content/www/us/en/develop/articles/api-without-secrets-introduction-to-vulkan-preface.html
https://developer.qualcomm.com/software/adreno-gpu-sdk/tutorial-videos
http://ogldev.atspace.co.uk/www/tutorial50/tutorial50.html
https://alain.xyz/blog/raw-vulkan
http://jhenriques.net/development.html
https://web.engr.oregonstate.edu/~mjb/vulkan/
https://gpuopen.com/learn/using-the-vulkan-validation-layers/
https://www.saschawillems.de/blog/2016/05/28/tutorial-on-using-vulkans-vk_ext_debug_marker-with-renderdoc/
https://github.com/vinjn/awesome-vulkan
https://www.fasterthan.life/blog/2017/7/11/i-am-graphics-and-so-can-you-part-1
https://developer.nvidia.com/transitioning-opengl-vulkan
https://community.arm.com/developer/tools-software/graphics/b/blog/posts/porting-a-graphics-engine-to-the-vulkan-api
https://github.com/SaschaWillems/Vulkan-glTF-PBR
https://developer.nvidia.com/blog/vulkan-dos-donts/
https://renderdoc.org/vulkan-in-30-minutes.html
https://zeux.io/2020/02/27/writing-an-efficient-vulkan-renderer/
https://www.duskborn.com/posts/a-simple-vulkan-compute-example/
https://vulkan.lunarg.com/doc/sdk/1.0.26.0/linux/tutorial.html
https://developer.android.com/ndk/guides/graphics/getting-started
https://moltengl.com/moltenvk/
https://www.reddit.com/r/vulkan/comments/52aodq/multithreading_in_vulkan_where_should_i_start/
https://community.arm.com/developer/tools-software/graphics/b/blog/posts/multi-threading-in-vulkan
https://developer.nvidia.com/blog/new-vulkan-device-generated-commands/
https://developer.nvidia.com/vulkan-memory-management
https://gpuopen.com/learn/vulkan-device-memory/

Inexor Vulkan Renderer, Release v0.1-alpha.3

• Vulkan Barriers Explained

• GPUOpen performance guide

1.6.6 Vulkan API presentations

• NVidia: GPU-driven rendering

• NVidia: Vulkan: the essentials

• The most common Vulkan mistakes

• High-performance, Low-Overhead Rendering with OpenGL and Vulkan

• Vulkan on NVidia GPUs

• Get Your Engine Ready for Vulkan on Mobile

• Vulkan’s Key Features on ARM Architecture

1.6.7 Vulkan API example projects

• The official Khronos Vulkan samples

• Sascha Willems’ Vulkan tutorials

• Sascha Willems’ tutorial about Vulkan debug markers

• VFPR - a Vulkan Forward Plus Renderer

1.6.8 Drivers

• NVidia drivers

• Open source AMD Vulkan driver

• Open source Intel Vulkan driver

1.6.9 Debuggers

• RenderDoc

• NVidia NSight

• AMD’s GPU profiler

1.6.10 Modern C++

• Awesome modern C++

• C++ Core Guidelines

70 Chapter 1. Documentation

https://gpuopen.com/learn/vulkan-barriers-explained/
https://gpuopen.com/performance/#barriers
http://on-demand.gputechconf.com/gtc/2016/presentation/s6138-christoph-kubisch-pierre-boudier-gpu-driven-rendering.pdf
http://developer.download.nvidia.com/gameworks/events/GDC2016/Vulkan_Essentials_GDC16_tlorach.pdf
http://32ipi028l5q82yhj72224m8j.wpengine.netdna-cdn.com/wp-content/uploads/2016/05/Most-common-mistakes-in-Vulkan-apps.pdf
http://developer.download.nvidia.com/gameworks/events/GDC2016/mschott_lbishop_gl_vulkan.pdf
http://on-demand.gputechconf.com/siggraph/2015/presentation/SIG1501-Piers-Daniell.pdf
https://developer.arm.com/-/media/Files/pdf/graphics-and-multimedia/Get%20Your%20Engine%20Ready%20for%20Vulkan%20on%20Mobile.pdf
https://developer.arm.com/-/media/Files/pdf/graphics-and-multimedia/Vulkan%20API%20key%20features%20on%20ARM%20architecture.pdf
https://github.com/KhronosGroup/Vulkan-Samples
https://github.com/SaschaWillems/Vulkan
https://www.saschawillems.de/blog/2016/05/28/tutorial-on-using-vulkans-vk_ext_debug_marker-with-renderdoc/
https://github.com/WindyDarian/Vulkan-Forward-Plus-Renderer
https://developer.nvidia.com/vulkan-driver
https://github.com/GPUOpen-Drivers/AMDVLK
https://01.org/linuxgraphics/blogs/jekstrand/2016/open-source-vulkan-drivers-intel-hardware/
https://renderdoc.org/
https://developer.nvidia.com/nsight-visual-studio-edition
https://gpuopen.com/rgp/
https://github.com/rigtorp/awesome-modern-cpp
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

Inexor Vulkan Renderer, Release v0.1-alpha.3

1.7 Source Code License

Copyright 2019-present Inexor Collective

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

1.8 Contact us

Please join our Discord server and visit our website at www.inexor.org.

1.9 Frequently asked questions

Please visit inexor.org and join our Discord server.

• What is Inexor?

• Which platforms are supported?

• What is the current state of the project?

• How is Inexor organized?

• How to contact us?

• How to build?

• Where to find Inexor’s documentation?

• What is Vulkan API?

• Why is Vulkan API the future?

• Can you explain Vulkan API in simple terms?

• How difficult is development with Vulkan API?

• Does my graphics card support Vulkan API?

• Will you support other rendering APIs?

• Which topics are currently not in focus of development?

1.7. Source Code License 71

https://discord.com/invite/acUW8k7
https://inexor.org
https://inexor.org
https://discord.com/invite/acUW8k7

Inexor Vulkan Renderer, Release v0.1-alpha.3

1.9.1 What is Inexor?

images/inexor2.png

Inexor is a MIT-licensed open-source project which develops a new 3D octree game engine by combining modern C++
with Vulkan Vulkan API.

We have the following goals for the Inexor engine:

• Combine modern C++ with Vulkan API.

• Task-based parallelization using a threadpool and a work stealing queue.

• Generic rendering architecture using a rendergraph.

• Create a Vulkan API codebase which can be used in production.

We are using good software engineering practices:

• Resource acquisition is initialization (RAII).

• Software design patterns.

• Continuous integration (CI) using GitHub actions.

• Code design by strict compliance with the C++ core guidelines and Scott Meyers books.

• Use of the new C++ standard library (C++11, C++14, and C++17).

• Code documentation using doxygen.

• Automatic unit testing and benchmarking.

• Static code analysis with clang-tidy.

• Automatic code formatting using clang-format.

• CMake project setup.

You can find Vulkan example code online which follows the mantra “don’t use this in production - it’s tutorial code”.
Inexor disagrees with this as we believe that defeats its own purpose. If example code is not meant to be used in
some other projects then there’s something wrong with that example code. Many projects don’t use a proper memory
management library like VMA or they do not abstract their code using RAII, but use a lot of code duplication instead.
Inexor is designed to be used in production. Bear in mind however that Inexor is also still far away from being a finished
game engine.

72 Chapter 1. Documentation

https://awesomecpp.com/
https://www.khronos.org/vulkan/
https://www.youtube.com/watch?v=TC9zhufV_Z8
https://www.khronos.org/vulkan/
https://youtu.be/JpmK0zu4Mts?t=500
https://community.khronos.org/t/opinions-on-using-threadpools-for-designing-a-vulkan-game-engine/105519
https://stackoverflow.com/questions/2101789/implementation-of-a-work-stealing-queue-in-c-c
https://youtu.be/6NWfznwFnMs?t=1845
https://de.slideshare.net/DICEStudio/framegraph-extensible-rendering-architecture-in-frostbite
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-raii
https://refactoring.guru/
https://en.wikipedia.org/wiki/Continuous_integration
https://github.com/features/actions
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://www.oreilly.com/library/view/effective-modern-c/9781491908419/
https://en.cppreference.com/w/cpp/header
https://www.doxygen.nl/index.html
https://github.com/google/googletest
https://github.com/google/benchmark
https://en.wikipedia.org/wiki/Static_program_analysis
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/docs/ClangFormat.html
https://clang.llvm.org/docs/ClangFormat.html
https://cmake.org/
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-raii

Inexor Vulkan Renderer, Release v0.1-alpha.3

1.9.2 Which platforms are supported?

• We support x64 Microsoft Windows 8, 8.1, and 10.

• We support every x64 Linux distribution for which Vulkan drivers exist.

• We have specific build instructions for Gentoo and Ubuntu. If you have found a way to set it up for other Linux
distributions, please open a pull request and let us know!

• We do not support macOS or iOS because it would require us to use MoltenVK to get Vulkan running on Mac
OS. Additionally, this would require some changes in the engines as not all of Inexor’s dependencies are available
on macOS or iOS.

• We also do not support Android because this would require some changes in the engines as not all of Inexor’s
dependencies are available on Android.

1.9.3 What is the current state of the project?

We are still in very early development, but this project can already offer:

• A modern C++20 codebase with CMake setup.

• Stable builds for Windows and Linux using Continuous Integration (CI).

• A rendergraph in early development.

• ImGui integration using separate renderpasses.

• RAII wrappers for various Vulkan resources.

• Extensive logging with spdlog.

• Vulkan Memory Allocator for graphics memory management.

• VMA memory replays for debugging are already working.

• Full RenderDoc integration with internal resource naming.

1.9.4 How is Inexor organized?

• Inexor has no central authority.

• It’s a headless collective which makes decisions through creative discussions.

• We are welcoming new contributors to our team.

1.9. Frequently asked questions 73

https://www.gentoo.org/
https://ubuntu.com/download
https://github.com/inexorgame/vulkan-renderer/pulls
https://github.com/KhronosGroup/MoltenVK
https://en.wikipedia.org/wiki/Continuous_integration
https://de.slideshare.net/DICEStudio/framegraph-extensible-rendering-architecture-in-frostbite
https://github.com/ocornut/imgui
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rr-raii
https://github.com/gabime/spdlog
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator#binaries
https://renderdoc.org/
https://www.saschawillems.de/blog/2016/05/28/tutorial-on-using-vulkans-vk_ext_debug_marker-with-renderdoc/

Inexor Vulkan Renderer, Release v0.1-alpha.3

1.9.5 How to contact us?

Please visit inexor.org and join our Discord server.

1.9.6 How to build?

If you have any trouble building please open a ticket or join our Discord.

How to build vulkan-renderer?

1.9.7 Where to find Inexor’s documentation?

• Read our docs here.

1.9.8 What is Vulkan API?

Inexor uses Vulkan API as rendering backend. Vulkan is a new, multi platform low level API (application program-
ming interface) for high-performance graphics programming and computing. It is the successor to OpenGL, and it is
important to state that is is very different from it. Vulkan is not just a new version of OpenGL or an extension of it.
Instead, Vulkan is a very low level API which allows for much deeper control over the graphics card and the driver, like
DirectX 12 or Apple’s Metal. Unlike OpenGL, Vulkan API is build in a way it fits the architecture of modern graphics
cards. This offers better performance due to reduction of overhead and driver guesswork during runtime. This results in
higher frame rate, more predictable CPU workload and a lower memory usage. The most important benefit of Vulkan is
the fact that it allows for multithreaded rendering, which is not possible in OpenGL at all. In general, Vulkan does a lot
of work during the initialization of the application but therefore reduces work during rendering. Since Vulkan is much
more explicit in terms of code, it foces you to think about the structure and architecture of your code. Both Vulkan and
OpenGL are being developed by the Khronos Group. Vulkan is being developed through an unprecedented collabora-
tion of major industry-leading companies (Google, Intel, AMD, NVidia, Sony, Samsung, Huawei, Qualcomm, Valve
Software and many more). Vulkan is the only multi platform low level graphics API.

1.9.9 Why is Vulkan API the future?

Performance

• Lower and more predictable CPU load which results in better performance and a reduction of driver guesswork.

• Vulkan API is asynchronous and encourages multithreaded rendering. This is not possible with OpenGL!

• The low level API design of Vulkan allows for advanced optimizations such as rendergraphs for generic rendering
architectures.

74 Chapter 1. Documentation

https://inexor.org
https://discord.com/invite/acUW8k7
https://github.com/inexorgame/vulkan-renderer/issues
https://discord.com/invite/acUW8k7
https://inexor-vulkan-renderer.readthedocs.io/en/latest/development/building.html
https://inexor-vulkan-renderer.readthedocs.io/en/latest/
https://www.khronos.org/vulkan/
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/DirectX
https://en.wikipedia.org/wiki/Metal_(API)
https://stackoverflow.com/questions/56766983/what-can-vulkan-do-specifically-that-opengl-4-6-cannot
https://stackoverflow.com/questions/11097170/multithreaded-rendering-on-opengl
https://www.khronos.org/
https://www.khronos.org/members/list
https://www.khronos.org/members/list
https://stackoverflow.com/questions/56766983/what-can-vulkan-do-specifically-that-opengl-4-6-cannot
https://www.reddit.com/r/vulkan/comments/52aodq/multithreading_in_vulkan_where_should_i_start/
https://de.slideshare.net/DICEStudio/framegraph-extensible-rendering-architecture-in-frostbite

Inexor Vulkan Renderer, Release v0.1-alpha.3

• It also wants you to use the GPU asynchronously, sometimes referred to as GPU multithreading.

• Vulkan allows the use of multiple GPUs, even if they are not physically linked via crossfire bridge.

• The reduction of CPU workload and it’s improved predictability can enforce the GPU to be the limiting factor of
performance, as it should be.

Memory efficiency

• Vulkan gives much deeper control and better interfaces over graphics and system memory.

• Vulkan API enforces memory management to be done by the application rather than the driver.

• Since the application knows best about the importance of every resource it uses, Vulkan API allows for a better
memory usage.

Architecture

• Unlike OpenGL, Vulkan fits the design of modern GPUs as it is not just one single state machine. This means
Vulkan API was designed from the beginning to match the architecture of modern graphics cards. OpenGL
however still matches the design of graphics cards from the time it was invented in the 1990s.

• Vulkan is a fresh start, whereas OpenGL contains a myriad of hacks to support very rare use cases.

• Vulkan has layers and extensions as part of its design. You can check for supported GPU plugins on the target
machine and enable them as needed.

• Vulkan API itself is completely platform agnostic.

• Available on a variety of platforms: Windows, Linux, mobile devices and much more!

• The ending of the OpenGL era has begun.

• Vulkan is being developed through an unprecedented collaboration of major industry-leading companies. It is
not being developed by one company only (like Microsoft’s DirectX for example).

• As Vulkan’s motto states, it really is industry-forged.

Consistency and standardization

• Vulkan precompiles shaders to a standardized bytecode format called SPIR-V. This also reduces driver guesswork
during runtime.

• The explicit design of Vulkan gives much deeper control and avoids driver guesswork and undefined behavior of
graphics drivers.

Debugging tools

• Validation layers and diagnostics can be independently activated during development, allowing better error han-
dling and debugging compared with OpenGL or DirectX.

• Upon release builds, the validation layers can be turned off easily.

• Vulkan API applications can be debugged with RenderDoc.

• The Vulkan specification is very easy to read and it is the central guideline for how to use the API.

Open Source

• Vulkan API and some Vulkan graphics card drivers are open source.

1.9. Frequently asked questions 75

https://stackoverflow.com/questions/31282678/what-is-the-opengl-state-machine
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#extendingvulkan-layers
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#extendingvulkan-extensions
https://www.reddit.com/r/opengl/comments/b44tyu/apple_is_deprecating_opengl/
https://www.khronos.org/members/list
https://en.wikipedia.org/wiki/Standard_Portable_Intermediate_Representation
https://www.khronos.org/spir/
https://github.com/KhronosGroup/Vulkan-ValidationLayers
https://renderdoc.org/
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html
https://en.wikipedia.org/wiki/Open_source

Inexor Vulkan Renderer, Release v0.1-alpha.3

1.9.10 Can you explain Vulkan API in simple terms?

• Vulkan API gives programmers much deeper control over the gamer’s hardware.

• If applied correctly, Vulkan can result in a significant performance boost.

• The API encourages the programmers to think in detail about graphics cards and their game engine.

• It offers advanced optimization techniques which can result in a lower RAM and video memory usage.

• Using Vulkan can yield in lower and more predictable CPU usage.

• Vulkan allows programmers to make more effective use of multiple CPU cores.

1.9.11 How difficult is development with Vulkan API?

• This API does a lot of initialization during the loading phase of the application.

• The key to success is a good abstraction of Vulkan API based on the needs of the application/game.

• Vulkan is a C-style API. In simplified terms you fill out structures which start with Vk.. and submit them together
with other parameters to vk... functions. That’s it. No complex interfaces.

• Vulkan API has a very good documentation.

• The challenges of Vulkan game/engine development boil down to basic programming challenges: abstraction,
resource management and parallelization.

• You may want to read Vulkan in 30 minutes by Baldur Karlsson.

1.9.12 Does my graphics card support Vulkan API?

• You can look up your graphics card in the Vulkan hardware database by Sascha Willems.

• Every new graphics card which is coming out these days supports Vulkan API.

• Vulkan is also supported on older graphics cards going back to Radeon HD 7000 series and Nvidia Geforce 6
series.

1.9.13 Will you support other rendering APIs?

• No, because testing for Vulkan already takes a lot of time and there is no sense in supporting deprecated tech-
nology.

• Some studios like id-software also dropped OpenGL entirely.

• Vulkan API is the only low level multi platform graphics and compute API.

76 Chapter 1. Documentation

https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html
https://renderdoc.org/vulkan-in-30-minutes.html
https://github.com/baldurk/renderdoc
https://vulkan.gpuinfo.org/
https://www.saschawillems.de/
https://en.wikipedia.org/wiki/Radeon_HD_7000_series
https://en.wikipedia.org/wiki/GeForce_6_series
https://en.wikipedia.org/wiki/GeForce_6_series
https://youtu.be/0R23npUCCnw?t=252

Inexor Vulkan Renderer, Release v0.1-alpha.3

1.9.14 Which topics are currently not in focus of development?

• We are currently focusing on the renderer and Vulkan API. When the time has come, we will take parallelization
into account.

• A game engine needs other components besides rendering of course. However, we are currently not focusing
on the following topics: networking, sound, physics, packaging of game engine resources and everything else
which is not related to rendering.

• We will not begin to support additional platforms besides Linux and Windows in the near future.

1.9. Frequently asked questions 77

Inexor Vulkan Renderer, Release v0.1-alpha.3

78 Chapter 1. Documentation

INDEX

Symbols
--gpu

command line option, 9
--no-separate-data-queue

command line option, 9
--no-validation

command line option, 9
--no-vk-debug-markers

command line option, 10
--renderdoc

command line option, 10
--vsync

command line option, 10

C
command line option

--gpu, 9
--no-separate-data-queue, 9
--no-validation, 9
--no-vk-debug-markers, 10
--renderdoc, 10
--vsync, 10

79

	Documentation
	Development
	Supported platforms
	Microsoft Windows
	Linux
	macOS and iOS
	Android

	Getting started
	Required Software
	Optional Software
	Does my graphics card support Vulkan?
	Update your graphics drivers!

	Building vulkan-renderer
	Windows
	Linux

	Debugging
	Logfiles
	Command Line Arguments
	RenderDoc
	RenderDoc Tutorial for Windows
	Step 1: Open Inexor in Visual Studio and add a breakpoint before Vulkan initialization
	Step 2: Open RenderDoc.
	Step 3: Start debugging inexor-vulkan-renderer and halt at the breakpoint
	Step 4: “Inject into process” inexor-vulkan-renderer.exe using RenderDoc
	Step 5: Search for “inexor-vulkan-renderer.exe” and click “inject”
	Step 6: Continue debugging in Visual Studio
	Step 7: Debug inexor-vulkan-renderer.exe as usual and press F12 to take RenderDoc snapshots
	Step 8: Open a snapshot to analyze the rendering of this frame

	VMA dumps

	Engine design
	Folder structure
	Source code
	Application

	Dependency management
	Criteria for library selection

	Coding style
	Naming convention
	Error handling
	Get methods
	Removed clang-tidy checks

	Code design
	Literature
	General considerations
	C++ core guidelines
	Philosophy
	Interfaces
	Functions and class methods
	Classes
	Enumerations
	Resource management
	Classes
	Follow rule of 0 and rule of 5
	Performance

	Design patterns
	Regressions

	Continuous integration
	Clang format
	Test automation
	Benchmarking
	Static code analysis
	Reference
	GPU selection mechanism
	Binary Format Specification
	Endianness
	Data Types
	Struct Types
	Bit Reading & Variables
	Conditions
	Loops
	Functions

	Keyboard and mouse input
	Keyboard input
	Mouse input
	Joysticks

	Octree File Format
	Octree
	Format Specification
	Sauerbraten
	Inexor I
	Inexor II
	Inexor III

	Multi octree collision detection
	Finding the octree closest to the camera
	The square of the distance
	Finding the leaf node
	Subcube iteration
	Determination of selected face
	Calculation of closest corner
	Calculation of closest edge
	Closing remarks

	Management of command pools and command bufers
	Thread-local command pools
	Command buffer request system
	Device wrapper’s execute method

	GitHub Issue Labeling

	Source Code
	How to contribute
	Code of Conduct
	Our Pledge
	Our Standards
	Our Responsibilities
	Scope
	Enforcement
	Attribution

	Licenses
	List of accepted licenses
	List of licenses we don’t accept:
	Special notes
	Common mistakes:

	Contribute code
	Signing commits
	Commit naming convention
	Additional information

	Contribute art
	List of Contributors

	Frequently asked questions
	What is Inexor?
	Which platforms are supported?
	What is the current state of the project?
	How is Inexor organized?
	How to contact us?
	How to build?
	Where to find Inexor’s documentation?
	What is Vulkan API?
	Why is Vulkan API the future?
	Can you explain Vulkan API in simple terms?
	How difficult is development with Vulkan API?
	Does my graphics card support Vulkan API?
	Will you support other rendering APIs?
	Which topics are currently not in focus of development?

	Changelog
	v0.1-alpha.3 (17 May 2020)
	Changed

	v0.1-alpha.2 (26 Apr 2020)
	Added
	Changed
	Fixed

	v0.1-alpha.1 (12 Apr 2020)
	Added

	Helpful Links
	Advantages of Vulkan
	Getting started with Vulkan
	Beginner Vulkan API tutorials
	Migrating from OpenGL to Vulkan API
	Advanced Vulkan API tutorials and articles
	Vulkan API presentations
	Vulkan API example projects
	Drivers
	Debuggers
	Modern C++

	Source Code License
	Contact us
	Frequently asked questions
	What is Inexor?
	Which platforms are supported?
	What is the current state of the project?
	How is Inexor organized?
	How to contact us?
	How to build?
	Where to find Inexor’s documentation?
	What is Vulkan API?
	Why is Vulkan API the future?
	Can you explain Vulkan API in simple terms?
	How difficult is development with Vulkan API?
	Does my graphics card support Vulkan API?
	Will you support other rendering APIs?
	Which topics are currently not in focus of development?

	Index

